Loading…

Sequential Video VLAD: Training the Aggregation Locally and Temporally

As characterizing videos simultaneously from spatial and temporal cues has been shown crucial for the video analysis, the combination of convolutional neural networks and recurrent neural networks, i.e., recurrent convolution networks (RCNs), should be a native framework for learning the spatio-temp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2018-10, Vol.27 (10), p.4933-4944
Main Authors: Youjiang Xu, Yahong Han, Hong, Richang, Qi Tian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f33345b431c8c2c6423804b27685916f0fc83534f1bda6f99d08be0e073b1a9f3
cites cdi_FETCH-LOGICAL-c319t-f33345b431c8c2c6423804b27685916f0fc83534f1bda6f99d08be0e073b1a9f3
container_end_page 4944
container_issue 10
container_start_page 4933
container_title IEEE transactions on image processing
container_volume 27
creator Youjiang Xu
Yahong Han
Hong, Richang
Qi Tian
description As characterizing videos simultaneously from spatial and temporal cues has been shown crucial for the video analysis, the combination of convolutional neural networks and recurrent neural networks, i.e., recurrent convolution networks (RCNs), should be a native framework for learning the spatio-temporal video features. In this paper, we develop a novel sequential vector of locally aggregated descriptor (VLAD) layer, named SeqVLAD, to combine a trainable VLAD encoding process and the RCNs architecture into a whole framework. In particular, sequential convolutional feature maps extracted from successive video frames are fed into the RCNs to learn soft spatio-temporal assignment parameters, so as to aggregate not only detailed spatial information in separate video frames but also fine motion information in successive video frames. Moreover, we improve the gated recurrent unit (GRU) of RCNs by sharing the input-to-hidden parameters and propose an improved GRU-RCN architecture named shared GRU-RCN (SGRU-RCN). Thus, our SGRU-RCN has a fewer parameters and a less possibility of overfitting. In experiments, we evaluate SeqVLAD with the tasks of video captioning and video action recognition. Experimental results on Microsoft Research Video Description Corpus, Montreal Video Annotation Dataset, UCF101, and HMDB51 demonstrate the effectiveness and good performance of our method.
doi_str_mv 10.1109/TIP.2018.2846664
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_29985134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8382330</ieee_id><sourcerecordid>2067138364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f33345b431c8c2c6423804b27685916f0fc83534f1bda6f99d08be0e073b1a9f3</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRbK3eBUFy9JI6s7PZ7Hor1WohoGDsNWySTYykSc2mh_57U1p7mhnmfcPwGLtFmCKCfoyXH1MOqKZcCSmlOGNj1AJ9AMHPhx6C0A9R6BG7cu4HAEWA8pKNuNYqQBJjtvi0v1vb9JWpvVWV29ZbRbPnJy_uTNVUTen139ablWVnS9NXbeNFbWbqeueZJvdiu9603X68ZheFqZ29OdYJ-1q8xPM3P3p_Xc5nkZ8R6t4viEgEqSDMVMYzKTgpECkPpQo0ygKKTFFAosA0N7LQOgeVWrAQUopGFzRhD4e7m64d_nZ9sq5cZuvaNLbduoSDDJEUSTGgcECzrnWus0Wy6aq16XYJQrK3lwz2kr295GhviNwfr2_Ttc1PgX9dA3B3ACpr7WmtSHEioD8u8HGO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067138364</pqid></control><display><type>article</type><title>Sequential Video VLAD: Training the Aggregation Locally and Temporally</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Youjiang Xu ; Yahong Han ; Hong, Richang ; Qi Tian</creator><creatorcontrib>Youjiang Xu ; Yahong Han ; Hong, Richang ; Qi Tian</creatorcontrib><description>As characterizing videos simultaneously from spatial and temporal cues has been shown crucial for the video analysis, the combination of convolutional neural networks and recurrent neural networks, i.e., recurrent convolution networks (RCNs), should be a native framework for learning the spatio-temporal video features. In this paper, we develop a novel sequential vector of locally aggregated descriptor (VLAD) layer, named SeqVLAD, to combine a trainable VLAD encoding process and the RCNs architecture into a whole framework. In particular, sequential convolutional feature maps extracted from successive video frames are fed into the RCNs to learn soft spatio-temporal assignment parameters, so as to aggregate not only detailed spatial information in separate video frames but also fine motion information in successive video frames. Moreover, we improve the gated recurrent unit (GRU) of RCNs by sharing the input-to-hidden parameters and propose an improved GRU-RCN architecture named shared GRU-RCN (SGRU-RCN). Thus, our SGRU-RCN has a fewer parameters and a less possibility of overfitting. In experiments, we evaluate SeqVLAD with the tasks of video captioning and video action recognition. Experimental results on Microsoft Research Video Description Corpus, Montreal Video Annotation Dataset, UCF101, and HMDB51 demonstrate the effectiveness and good performance of our method.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2846664</identifier><identifier>PMID: 29985134</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>action recognition ; Aggregates ; Convolution ; deep learning ; Feature extraction ; Image coding ; recurrent convolution networks ; Recurrent neural networks ; Task analysis ; video captioning ; Video representation ; Visualization</subject><ispartof>IEEE transactions on image processing, 2018-10, Vol.27 (10), p.4933-4944</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f33345b431c8c2c6423804b27685916f0fc83534f1bda6f99d08be0e073b1a9f3</citedby><cites>FETCH-LOGICAL-c319t-f33345b431c8c2c6423804b27685916f0fc83534f1bda6f99d08be0e073b1a9f3</cites><orcidid>0000-0003-2768-1398 ; 0000-0001-5461-3986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8382330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29985134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Youjiang Xu</creatorcontrib><creatorcontrib>Yahong Han</creatorcontrib><creatorcontrib>Hong, Richang</creatorcontrib><creatorcontrib>Qi Tian</creatorcontrib><title>Sequential Video VLAD: Training the Aggregation Locally and Temporally</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>As characterizing videos simultaneously from spatial and temporal cues has been shown crucial for the video analysis, the combination of convolutional neural networks and recurrent neural networks, i.e., recurrent convolution networks (RCNs), should be a native framework for learning the spatio-temporal video features. In this paper, we develop a novel sequential vector of locally aggregated descriptor (VLAD) layer, named SeqVLAD, to combine a trainable VLAD encoding process and the RCNs architecture into a whole framework. In particular, sequential convolutional feature maps extracted from successive video frames are fed into the RCNs to learn soft spatio-temporal assignment parameters, so as to aggregate not only detailed spatial information in separate video frames but also fine motion information in successive video frames. Moreover, we improve the gated recurrent unit (GRU) of RCNs by sharing the input-to-hidden parameters and propose an improved GRU-RCN architecture named shared GRU-RCN (SGRU-RCN). Thus, our SGRU-RCN has a fewer parameters and a less possibility of overfitting. In experiments, we evaluate SeqVLAD with the tasks of video captioning and video action recognition. Experimental results on Microsoft Research Video Description Corpus, Montreal Video Annotation Dataset, UCF101, and HMDB51 demonstrate the effectiveness and good performance of our method.</description><subject>action recognition</subject><subject>Aggregates</subject><subject>Convolution</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>Image coding</subject><subject>recurrent convolution networks</subject><subject>Recurrent neural networks</subject><subject>Task analysis</subject><subject>video captioning</subject><subject>Video representation</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLw0AQRhdRbK3eBUFy9JI6s7PZ7Hor1WohoGDsNWySTYykSc2mh_57U1p7mhnmfcPwGLtFmCKCfoyXH1MOqKZcCSmlOGNj1AJ9AMHPhx6C0A9R6BG7cu4HAEWA8pKNuNYqQBJjtvi0v1vb9JWpvVWV29ZbRbPnJy_uTNVUTen139ablWVnS9NXbeNFbWbqeueZJvdiu9603X68ZheFqZ29OdYJ-1q8xPM3P3p_Xc5nkZ8R6t4viEgEqSDMVMYzKTgpECkPpQo0ygKKTFFAosA0N7LQOgeVWrAQUopGFzRhD4e7m64d_nZ9sq5cZuvaNLbduoSDDJEUSTGgcECzrnWus0Wy6aq16XYJQrK3lwz2kr295GhviNwfr2_Ttc1PgX9dA3B3ACpr7WmtSHEioD8u8HGO</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Youjiang Xu</creator><creator>Yahong Han</creator><creator>Hong, Richang</creator><creator>Qi Tian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2768-1398</orcidid><orcidid>https://orcid.org/0000-0001-5461-3986</orcidid></search><sort><creationdate>201810</creationdate><title>Sequential Video VLAD: Training the Aggregation Locally and Temporally</title><author>Youjiang Xu ; Yahong Han ; Hong, Richang ; Qi Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f33345b431c8c2c6423804b27685916f0fc83534f1bda6f99d08be0e073b1a9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>action recognition</topic><topic>Aggregates</topic><topic>Convolution</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>Image coding</topic><topic>recurrent convolution networks</topic><topic>Recurrent neural networks</topic><topic>Task analysis</topic><topic>video captioning</topic><topic>Video representation</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youjiang Xu</creatorcontrib><creatorcontrib>Yahong Han</creatorcontrib><creatorcontrib>Hong, Richang</creatorcontrib><creatorcontrib>Qi Tian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Youjiang Xu</au><au>Yahong Han</au><au>Hong, Richang</au><au>Qi Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Video VLAD: Training the Aggregation Locally and Temporally</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-10</date><risdate>2018</risdate><volume>27</volume><issue>10</issue><spage>4933</spage><epage>4944</epage><pages>4933-4944</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>As characterizing videos simultaneously from spatial and temporal cues has been shown crucial for the video analysis, the combination of convolutional neural networks and recurrent neural networks, i.e., recurrent convolution networks (RCNs), should be a native framework for learning the spatio-temporal video features. In this paper, we develop a novel sequential vector of locally aggregated descriptor (VLAD) layer, named SeqVLAD, to combine a trainable VLAD encoding process and the RCNs architecture into a whole framework. In particular, sequential convolutional feature maps extracted from successive video frames are fed into the RCNs to learn soft spatio-temporal assignment parameters, so as to aggregate not only detailed spatial information in separate video frames but also fine motion information in successive video frames. Moreover, we improve the gated recurrent unit (GRU) of RCNs by sharing the input-to-hidden parameters and propose an improved GRU-RCN architecture named shared GRU-RCN (SGRU-RCN). Thus, our SGRU-RCN has a fewer parameters and a less possibility of overfitting. In experiments, we evaluate SeqVLAD with the tasks of video captioning and video action recognition. Experimental results on Microsoft Research Video Description Corpus, Montreal Video Annotation Dataset, UCF101, and HMDB51 demonstrate the effectiveness and good performance of our method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29985134</pmid><doi>10.1109/TIP.2018.2846664</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2768-1398</orcidid><orcidid>https://orcid.org/0000-0001-5461-3986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2018-10, Vol.27 (10), p.4933-4944
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_29985134
source IEEE Electronic Library (IEL) Journals
subjects action recognition
Aggregates
Convolution
deep learning
Feature extraction
Image coding
recurrent convolution networks
Recurrent neural networks
Task analysis
video captioning
Video representation
Visualization
title Sequential Video VLAD: Training the Aggregation Locally and Temporally
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Video%20VLAD:%20Training%20the%20Aggregation%20Locally%20and%20Temporally&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Youjiang%20Xu&rft.date=2018-10&rft.volume=27&rft.issue=10&rft.spage=4933&rft.epage=4944&rft.pages=4933-4944&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2846664&rft_dat=%3Cproquest_pubme%3E2067138364%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f33345b431c8c2c6423804b27685916f0fc83534f1bda6f99d08be0e073b1a9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2067138364&rft_id=info:pmid/29985134&rft_ieee_id=8382330&rfr_iscdi=true