Loading…
High-Frame-Rate Contrast Echocardiography Using Diverging Waves: Initial In Vitro and In Vivo Evaluation
Contrast echocardiography (CE) ultrasound with microbubble contrast agents has significantly advanced our capability for assessment of cardiac function, including myocardium perfusion quantification. However, in standard CE techniques obtained with line by line scanning, the frame rate and image qua...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2018-12, Vol.65 (12), p.2212-2221 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-b00d0d7d8e65efc86409a07683c738019ae1adb1833a543fcb2b7ed48a12c1dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-b00d0d7d8e65efc86409a07683c738019ae1adb1833a543fcb2b7ed48a12c1dc3 |
container_end_page | 2221 |
container_issue | 12 |
container_start_page | 2212 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 65 |
creator | Toulemonde, Matthieu Yuanwei Li Shengtao Lin Cordonnier, Fabien Butler, Mairead Duncan, W. Colin Eckersley, Robert J. Sboros, Vassilis Meng-Xing Tang |
description | Contrast echocardiography (CE) ultrasound with microbubble contrast agents has significantly advanced our capability for assessment of cardiac function, including myocardium perfusion quantification. However, in standard CE techniques obtained with line by line scanning, the frame rate and image quality are limited. Recent research has shown significant frame-rate improvement in noncontrast cardiac imaging. In this work, we present and initially evaluate, both in vitro and in vivo, a high-frame-rate (HFR) CE imaging system using diverging waves and pulse inversion sequence. An imaging frame rate of 5500 frames/s before and 250 frames/s after compounding is achieved. A destruction-replenishment sequence has also been developed. The developed HFR CE is compared with standard CE in vitro on a phantom and then in vivo on a sheep heart. The image signal-to-noise ratio and contrast between the myocardium and the chamber are evaluated. The results show up to 13.4-dB improvement in contrast for HFR CE over standard CE when compared at the same display frame rate even when the average spatial acoustic pressure in HFR CE is 36% lower than the standard CE. It is also found that when coherent compounding is used, the HFR CE image intensity can be significantly modulated by the flow motion in the chamber. |
doi_str_mv | 10.1109/TUFFC.2018.2856756 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30028698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8412216</ieee_id><sourcerecordid>2159385192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b00d0d7d8e65efc86409a07683c738019ae1adb1833a543fcb2b7ed48a12c1dc3</originalsourceid><addsrcrecordid>eNpdkUGP0zAQhS0EYsvCHwAJReLCJWXGjhObGyotu9JKSGgLR2tiu61XaVzspNL-e1Ja9sBpZjTfexrNY-wtwhwR9Kf79Wq1mHNANedK1o2sn7EZSi5LpaV8zmaglCwFIFyxVzk_AGBVaf6SXQkArmqtZmx3E7a7cpVo78sfNPhiEfshUR6Kpd1FS8mFuE102D0W6xz6bfE1HH3anrpfdPT5c3HbhyFQN9XiZxhSLKh35-EYi-WRupGGEPvX7MWGuuzfXOo1W6-W94ub8u77t9vFl7vSCi2HsgVw4BqnfC39xqq6Ak3Q1ErYRihATR7JtaiEIFmJjW1523hXKUJu0VlxzT6efQ8p_h59Hsw-ZOu7jnofx2w4NEJwrIBP6If_0Ic4pn66znCUWiiJ-kTxM2VTzDn5jTmksKf0aBDMKQfzNwdzysFccphE7y_WY7v37kny7_ET8O4MBO_901pVyDnW4g-2KouM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159385192</pqid></control><display><type>article</type><title>High-Frame-Rate Contrast Echocardiography Using Diverging Waves: Initial In Vitro and In Vivo Evaluation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Toulemonde, Matthieu ; Yuanwei Li ; Shengtao Lin ; Cordonnier, Fabien ; Butler, Mairead ; Duncan, W. Colin ; Eckersley, Robert J. ; Sboros, Vassilis ; Meng-Xing Tang</creator><creatorcontrib>Toulemonde, Matthieu ; Yuanwei Li ; Shengtao Lin ; Cordonnier, Fabien ; Butler, Mairead ; Duncan, W. Colin ; Eckersley, Robert J. ; Sboros, Vassilis ; Meng-Xing Tang</creatorcontrib><description>Contrast echocardiography (CE) ultrasound with microbubble contrast agents has significantly advanced our capability for assessment of cardiac function, including myocardium perfusion quantification. However, in standard CE techniques obtained with line by line scanning, the frame rate and image quality are limited. Recent research has shown significant frame-rate improvement in noncontrast cardiac imaging. In this work, we present and initially evaluate, both in vitro and in vivo, a high-frame-rate (HFR) CE imaging system using diverging waves and pulse inversion sequence. An imaging frame rate of 5500 frames/s before and 250 frames/s after compounding is achieved. A destruction-replenishment sequence has also been developed. The developed HFR CE is compared with standard CE in vitro on a phantom and then in vivo on a sheep heart. The image signal-to-noise ratio and contrast between the myocardium and the chamber are evaluated. The results show up to 13.4-dB improvement in contrast for HFR CE over standard CE when compared at the same display frame rate even when the average spatial acoustic pressure in HFR CE is 36% lower than the standard CE. It is also found that when coherent compounding is used, the HFR CE image intensity can be significantly modulated by the flow motion in the chamber.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2018.2856756</identifier><identifier>PMID: 30028698</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vivo ; Acoustic noise ; Acoustics ; Animals ; Compounding ; Contrast agents ; Contrast Media - chemistry ; Contrast-enhanced ultrasound (CEUS) imaging ; Doppler effect ; Echocardiography ; Echocardiography - methods ; Female ; Heart ; Heart - diagnostic imaging ; high-frame-rate echocardiography ; Image contrast ; Image Processing, Computer-Assisted - methods ; Image quality ; Microbubbles ; Myocardium ; myocardium perfusion ; Phantoms, Imaging ; Probes ; Replenishment ; Sheep ; Signal-To-Noise Ratio ; ultrafast diverging beams ; Ultrasonic imaging</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2018-12, Vol.65 (12), p.2212-2221</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-b00d0d7d8e65efc86409a07683c738019ae1adb1833a543fcb2b7ed48a12c1dc3</citedby><cites>FETCH-LOGICAL-c395t-b00d0d7d8e65efc86409a07683c738019ae1adb1833a543fcb2b7ed48a12c1dc3</cites><orcidid>0000-0001-7686-425X ; 0000-0002-3191-8020 ; 0000-0002-9133-7252 ; 0000-0001-9247-5350 ; 0000-0003-1208-4945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8412216$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30028698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toulemonde, Matthieu</creatorcontrib><creatorcontrib>Yuanwei Li</creatorcontrib><creatorcontrib>Shengtao Lin</creatorcontrib><creatorcontrib>Cordonnier, Fabien</creatorcontrib><creatorcontrib>Butler, Mairead</creatorcontrib><creatorcontrib>Duncan, W. Colin</creatorcontrib><creatorcontrib>Eckersley, Robert J.</creatorcontrib><creatorcontrib>Sboros, Vassilis</creatorcontrib><creatorcontrib>Meng-Xing Tang</creatorcontrib><title>High-Frame-Rate Contrast Echocardiography Using Diverging Waves: Initial In Vitro and In Vivo Evaluation</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Contrast echocardiography (CE) ultrasound with microbubble contrast agents has significantly advanced our capability for assessment of cardiac function, including myocardium perfusion quantification. However, in standard CE techniques obtained with line by line scanning, the frame rate and image quality are limited. Recent research has shown significant frame-rate improvement in noncontrast cardiac imaging. In this work, we present and initially evaluate, both in vitro and in vivo, a high-frame-rate (HFR) CE imaging system using diverging waves and pulse inversion sequence. An imaging frame rate of 5500 frames/s before and 250 frames/s after compounding is achieved. A destruction-replenishment sequence has also been developed. The developed HFR CE is compared with standard CE in vitro on a phantom and then in vivo on a sheep heart. The image signal-to-noise ratio and contrast between the myocardium and the chamber are evaluated. The results show up to 13.4-dB improvement in contrast for HFR CE over standard CE when compared at the same display frame rate even when the average spatial acoustic pressure in HFR CE is 36% lower than the standard CE. It is also found that when coherent compounding is used, the HFR CE image intensity can be significantly modulated by the flow motion in the chamber.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vivo</subject><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Animals</subject><subject>Compounding</subject><subject>Contrast agents</subject><subject>Contrast Media - chemistry</subject><subject>Contrast-enhanced ultrasound (CEUS) imaging</subject><subject>Doppler effect</subject><subject>Echocardiography</subject><subject>Echocardiography - methods</subject><subject>Female</subject><subject>Heart</subject><subject>Heart - diagnostic imaging</subject><subject>high-frame-rate echocardiography</subject><subject>Image contrast</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Microbubbles</subject><subject>Myocardium</subject><subject>myocardium perfusion</subject><subject>Phantoms, Imaging</subject><subject>Probes</subject><subject>Replenishment</subject><subject>Sheep</subject><subject>Signal-To-Noise Ratio</subject><subject>ultrafast diverging beams</subject><subject>Ultrasonic imaging</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkUGP0zAQhS0EYsvCHwAJReLCJWXGjhObGyotu9JKSGgLR2tiu61XaVzspNL-e1Ja9sBpZjTfexrNY-wtwhwR9Kf79Wq1mHNANedK1o2sn7EZSi5LpaV8zmaglCwFIFyxVzk_AGBVaf6SXQkArmqtZmx3E7a7cpVo78sfNPhiEfshUR6Kpd1FS8mFuE102D0W6xz6bfE1HH3anrpfdPT5c3HbhyFQN9XiZxhSLKh35-EYi-WRupGGEPvX7MWGuuzfXOo1W6-W94ub8u77t9vFl7vSCi2HsgVw4BqnfC39xqq6Ak3Q1ErYRihATR7JtaiEIFmJjW1523hXKUJu0VlxzT6efQ8p_h59Hsw-ZOu7jnofx2w4NEJwrIBP6If_0Ic4pn66znCUWiiJ-kTxM2VTzDn5jTmksKf0aBDMKQfzNwdzysFccphE7y_WY7v37kny7_ET8O4MBO_901pVyDnW4g-2KouM</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Toulemonde, Matthieu</creator><creator>Yuanwei Li</creator><creator>Shengtao Lin</creator><creator>Cordonnier, Fabien</creator><creator>Butler, Mairead</creator><creator>Duncan, W. Colin</creator><creator>Eckersley, Robert J.</creator><creator>Sboros, Vassilis</creator><creator>Meng-Xing Tang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7686-425X</orcidid><orcidid>https://orcid.org/0000-0002-3191-8020</orcidid><orcidid>https://orcid.org/0000-0002-9133-7252</orcidid><orcidid>https://orcid.org/0000-0001-9247-5350</orcidid><orcidid>https://orcid.org/0000-0003-1208-4945</orcidid></search><sort><creationdate>20181201</creationdate><title>High-Frame-Rate Contrast Echocardiography Using Diverging Waves: Initial In Vitro and In Vivo Evaluation</title><author>Toulemonde, Matthieu ; Yuanwei Li ; Shengtao Lin ; Cordonnier, Fabien ; Butler, Mairead ; Duncan, W. Colin ; Eckersley, Robert J. ; Sboros, Vassilis ; Meng-Xing Tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b00d0d7d8e65efc86409a07683c738019ae1adb1833a543fcb2b7ed48a12c1dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vivo</topic><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Animals</topic><topic>Compounding</topic><topic>Contrast agents</topic><topic>Contrast Media - chemistry</topic><topic>Contrast-enhanced ultrasound (CEUS) imaging</topic><topic>Doppler effect</topic><topic>Echocardiography</topic><topic>Echocardiography - methods</topic><topic>Female</topic><topic>Heart</topic><topic>Heart - diagnostic imaging</topic><topic>high-frame-rate echocardiography</topic><topic>Image contrast</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Microbubbles</topic><topic>Myocardium</topic><topic>myocardium perfusion</topic><topic>Phantoms, Imaging</topic><topic>Probes</topic><topic>Replenishment</topic><topic>Sheep</topic><topic>Signal-To-Noise Ratio</topic><topic>ultrafast diverging beams</topic><topic>Ultrasonic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toulemonde, Matthieu</creatorcontrib><creatorcontrib>Yuanwei Li</creatorcontrib><creatorcontrib>Shengtao Lin</creatorcontrib><creatorcontrib>Cordonnier, Fabien</creatorcontrib><creatorcontrib>Butler, Mairead</creatorcontrib><creatorcontrib>Duncan, W. Colin</creatorcontrib><creatorcontrib>Eckersley, Robert J.</creatorcontrib><creatorcontrib>Sboros, Vassilis</creatorcontrib><creatorcontrib>Meng-Xing Tang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toulemonde, Matthieu</au><au>Yuanwei Li</au><au>Shengtao Lin</au><au>Cordonnier, Fabien</au><au>Butler, Mairead</au><au>Duncan, W. Colin</au><au>Eckersley, Robert J.</au><au>Sboros, Vassilis</au><au>Meng-Xing Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Frame-Rate Contrast Echocardiography Using Diverging Waves: Initial In Vitro and In Vivo Evaluation</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>65</volume><issue>12</issue><spage>2212</spage><epage>2221</epage><pages>2212-2221</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Contrast echocardiography (CE) ultrasound with microbubble contrast agents has significantly advanced our capability for assessment of cardiac function, including myocardium perfusion quantification. However, in standard CE techniques obtained with line by line scanning, the frame rate and image quality are limited. Recent research has shown significant frame-rate improvement in noncontrast cardiac imaging. In this work, we present and initially evaluate, both in vitro and in vivo, a high-frame-rate (HFR) CE imaging system using diverging waves and pulse inversion sequence. An imaging frame rate of 5500 frames/s before and 250 frames/s after compounding is achieved. A destruction-replenishment sequence has also been developed. The developed HFR CE is compared with standard CE in vitro on a phantom and then in vivo on a sheep heart. The image signal-to-noise ratio and contrast between the myocardium and the chamber are evaluated. The results show up to 13.4-dB improvement in contrast for HFR CE over standard CE when compared at the same display frame rate even when the average spatial acoustic pressure in HFR CE is 36% lower than the standard CE. It is also found that when coherent compounding is used, the HFR CE image intensity can be significantly modulated by the flow motion in the chamber.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30028698</pmid><doi>10.1109/TUFFC.2018.2856756</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7686-425X</orcidid><orcidid>https://orcid.org/0000-0002-3191-8020</orcidid><orcidid>https://orcid.org/0000-0002-9133-7252</orcidid><orcidid>https://orcid.org/0000-0001-9247-5350</orcidid><orcidid>https://orcid.org/0000-0003-1208-4945</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2018-12, Vol.65 (12), p.2212-2221 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_pubmed_primary_30028698 |
source | IEEE Electronic Library (IEL) Journals |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">in vivo Acoustic noise Acoustics Animals Compounding Contrast agents Contrast Media - chemistry Contrast-enhanced ultrasound (CEUS) imaging Doppler effect Echocardiography Echocardiography - methods Female Heart Heart - diagnostic imaging high-frame-rate echocardiography Image contrast Image Processing, Computer-Assisted - methods Image quality Microbubbles Myocardium myocardium perfusion Phantoms, Imaging Probes Replenishment Sheep Signal-To-Noise Ratio ultrafast diverging beams Ultrasonic imaging |
title | High-Frame-Rate Contrast Echocardiography Using Diverging Waves: Initial In Vitro and In Vivo Evaluation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Frame-Rate%20Contrast%20Echocardiography%20Using%20Diverging%20Waves:%20Initial%20In%20Vitro%20and%20In%20Vivo%20Evaluation&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Toulemonde,%20Matthieu&rft.date=2018-12-01&rft.volume=65&rft.issue=12&rft.spage=2212&rft.epage=2221&rft.pages=2212-2221&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2018.2856756&rft_dat=%3Cproquest_pubme%3E2159385192%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-b00d0d7d8e65efc86409a07683c738019ae1adb1833a543fcb2b7ed48a12c1dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159385192&rft_id=info:pmid/30028698&rft_ieee_id=8412216&rfr_iscdi=true |