Loading…

Low-rank and sparse decomposition with spatially adaptive filtering for sequential segmentation of 2D+t vessels

This letter proposes to extract contrast-filled vessels from overlapped noisy complex backgrounds in an x-ray coronary angiogram image sequence using low-rank and sparse decomposition. A refined vessel segmentation is finally achieved by implementing a radon-like feature filtering plus local-to-glob...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2018-08, Vol.63 (17), p.17LT01-17LT01
Main Authors: Jin, Mingxin, Hao, Dongdong, Ding, Song, Qin, Binjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-47af9ad16cea3bef2c4e0a0ccf77a9d55aa8207f255368b4899b5d06cf8c92663
cites cdi_FETCH-LOGICAL-c369t-47af9ad16cea3bef2c4e0a0ccf77a9d55aa8207f255368b4899b5d06cf8c92663
container_end_page 17LT01
container_issue 17
container_start_page 17LT01
container_title Physics in medicine & biology
container_volume 63
creator Jin, Mingxin
Hao, Dongdong
Ding, Song
Qin, Binjie
description This letter proposes to extract contrast-filled vessels from overlapped noisy complex backgrounds in an x-ray coronary angiogram image sequence using low-rank and sparse decomposition. A refined vessel segmentation is finally achieved by implementing a radon-like feature filtering plus local-to-global adaptive thresholding to tackle the spatially varying noisy residuals in the extracted vessels. Based on real and synthetic XCA data, the experiment results demonstrate the superiority of the proposed method over the state-of-the-art methods.
doi_str_mv 10.1088/1361-6560/aad8e0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30088812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085663316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-47af9ad16cea3bef2c4e0a0ccf77a9d55aa8207f255368b4899b5d06cf8c92663</originalsourceid><addsrcrecordid>eNp9kEFPHSEURklTU19t964aliZ1FIYHwywbra3JS9zomtyBi2JnhhHmafz3ZXzWlWlCwg2c7wscQg45O-FM61MuFK-UVOwUwGlkH8jq7egjWTEmeNVyKffJ55zvGeNc1-tPZF-wkta8XpG4iU9VgvEPhdHRPEHKSB3aOEwxhznEkT6F-W65mQP0_TMFB9McHpH60M-YwnhLfUw048MWx4Up4-1QRnhJR0_r8-8zfcScsc9fyJ6HPuPX1_2A3Fz8vD77XW2ufl2e_dhUVqh2rtYN-BYcVxZBdOhru0YGzFrfNNA6KQF0zRpfSymU7ta6bTvpmLJe27ZWShyQo13vlGJ5WJ7NELLFvocR4zabmmlZMMEXlO1Qm2LOCb2ZUhggPRvOzKLZLE7N4tTsNJfIt9f2bTegewv881qA4x0Q4mTu4zaN5bP_6zt6B5-GzihheFPW5ppxMzkv_gIcOpbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085663316</pqid></control><display><type>article</type><title>Low-rank and sparse decomposition with spatially adaptive filtering for sequential segmentation of 2D+t vessels</title><source>Institute of Physics</source><creator>Jin, Mingxin ; Hao, Dongdong ; Ding, Song ; Qin, Binjie</creator><creatorcontrib>Jin, Mingxin ; Hao, Dongdong ; Ding, Song ; Qin, Binjie</creatorcontrib><description>This letter proposes to extract contrast-filled vessels from overlapped noisy complex backgrounds in an x-ray coronary angiogram image sequence using low-rank and sparse decomposition. A refined vessel segmentation is finally achieved by implementing a radon-like feature filtering plus local-to-global adaptive thresholding to tackle the spatially varying noisy residuals in the extracted vessels. Based on real and synthetic XCA data, the experiment results demonstrate the superiority of the proposed method over the state-of-the-art methods.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aad8e0</identifier><identifier>PMID: 30088812</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>local-to-global adaptive thresholding ; radon-like filtering ; robust principal component analysis ; vessel segmentation ; x-ray coronary angiography</subject><ispartof>Physics in medicine &amp; biology, 2018-08, Vol.63 (17), p.17LT01-17LT01</ispartof><rights>2018 Institute of Physics and Engineering in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-47af9ad16cea3bef2c4e0a0ccf77a9d55aa8207f255368b4899b5d06cf8c92663</citedby><cites>FETCH-LOGICAL-c369t-47af9ad16cea3bef2c4e0a0ccf77a9d55aa8207f255368b4899b5d06cf8c92663</cites><orcidid>0000-0001-7445-1582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30088812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Mingxin</creatorcontrib><creatorcontrib>Hao, Dongdong</creatorcontrib><creatorcontrib>Ding, Song</creatorcontrib><creatorcontrib>Qin, Binjie</creatorcontrib><title>Low-rank and sparse decomposition with spatially adaptive filtering for sequential segmentation of 2D+t vessels</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>This letter proposes to extract contrast-filled vessels from overlapped noisy complex backgrounds in an x-ray coronary angiogram image sequence using low-rank and sparse decomposition. A refined vessel segmentation is finally achieved by implementing a radon-like feature filtering plus local-to-global adaptive thresholding to tackle the spatially varying noisy residuals in the extracted vessels. Based on real and synthetic XCA data, the experiment results demonstrate the superiority of the proposed method over the state-of-the-art methods.</description><subject>local-to-global adaptive thresholding</subject><subject>radon-like filtering</subject><subject>robust principal component analysis</subject><subject>vessel segmentation</subject><subject>x-ray coronary angiography</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPHSEURklTU19t964aliZ1FIYHwywbra3JS9zomtyBi2JnhhHmafz3ZXzWlWlCwg2c7wscQg45O-FM61MuFK-UVOwUwGlkH8jq7egjWTEmeNVyKffJ55zvGeNc1-tPZF-wkta8XpG4iU9VgvEPhdHRPEHKSB3aOEwxhznEkT6F-W65mQP0_TMFB9McHpH60M-YwnhLfUw048MWx4Up4-1QRnhJR0_r8-8zfcScsc9fyJ6HPuPX1_2A3Fz8vD77XW2ufl2e_dhUVqh2rtYN-BYcVxZBdOhru0YGzFrfNNA6KQF0zRpfSymU7ta6bTvpmLJe27ZWShyQo13vlGJ5WJ7NELLFvocR4zabmmlZMMEXlO1Qm2LOCb2ZUhggPRvOzKLZLE7N4tTsNJfIt9f2bTegewv881qA4x0Q4mTu4zaN5bP_6zt6B5-GzihheFPW5ppxMzkv_gIcOpbE</recordid><startdate>20180829</startdate><enddate>20180829</enddate><creator>Jin, Mingxin</creator><creator>Hao, Dongdong</creator><creator>Ding, Song</creator><creator>Qin, Binjie</creator><general>IOP Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7445-1582</orcidid></search><sort><creationdate>20180829</creationdate><title>Low-rank and sparse decomposition with spatially adaptive filtering for sequential segmentation of 2D+t vessels</title><author>Jin, Mingxin ; Hao, Dongdong ; Ding, Song ; Qin, Binjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-47af9ad16cea3bef2c4e0a0ccf77a9d55aa8207f255368b4899b5d06cf8c92663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>local-to-global adaptive thresholding</topic><topic>radon-like filtering</topic><topic>robust principal component analysis</topic><topic>vessel segmentation</topic><topic>x-ray coronary angiography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Mingxin</creatorcontrib><creatorcontrib>Hao, Dongdong</creatorcontrib><creatorcontrib>Ding, Song</creatorcontrib><creatorcontrib>Qin, Binjie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Mingxin</au><au>Hao, Dongdong</au><au>Ding, Song</au><au>Qin, Binjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-rank and sparse decomposition with spatially adaptive filtering for sequential segmentation of 2D+t vessels</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2018-08-29</date><risdate>2018</risdate><volume>63</volume><issue>17</issue><spage>17LT01</spage><epage>17LT01</epage><pages>17LT01-17LT01</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>This letter proposes to extract contrast-filled vessels from overlapped noisy complex backgrounds in an x-ray coronary angiogram image sequence using low-rank and sparse decomposition. A refined vessel segmentation is finally achieved by implementing a radon-like feature filtering plus local-to-global adaptive thresholding to tackle the spatially varying noisy residuals in the extracted vessels. Based on real and synthetic XCA data, the experiment results demonstrate the superiority of the proposed method over the state-of-the-art methods.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30088812</pmid><doi>10.1088/1361-6560/aad8e0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7445-1582</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2018-08, Vol.63 (17), p.17LT01-17LT01
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_pubmed_primary_30088812
source Institute of Physics
subjects local-to-global adaptive thresholding
radon-like filtering
robust principal component analysis
vessel segmentation
x-ray coronary angiography
title Low-rank and sparse decomposition with spatially adaptive filtering for sequential segmentation of 2D+t vessels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-rank%20and%20sparse%20decomposition%20with%20spatially%20adaptive%20filtering%20for%20sequential%20segmentation%20of%202D+t%20vessels&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Jin,%20Mingxin&rft.date=2018-08-29&rft.volume=63&rft.issue=17&rft.spage=17LT01&rft.epage=17LT01&rft.pages=17LT01-17LT01&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aad8e0&rft_dat=%3Cproquest_pubme%3E2085663316%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-47af9ad16cea3bef2c4e0a0ccf77a9d55aa8207f255368b4899b5d06cf8c92663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085663316&rft_id=info:pmid/30088812&rfr_iscdi=true