Loading…
Laminin-111 functionalized polyethylene glycol hydrogels support myogenic activity in vitro
Skeletal muscle has a remarkable regenerative capability following mild physical or chemical insult. However, following a critical loss of muscle tissue, the regeneration process is impaired due to the inadequate myogenic activity of muscle resident stem cells (i.e., satellite cells). Laminin (LM) i...
Saved in:
Published in: | Biomedical materials (Bristol) 2018-08, Vol.13 (6), p.065007-065007 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Skeletal muscle has a remarkable regenerative capability following mild physical or chemical insult. However, following a critical loss of muscle tissue, the regeneration process is impaired due to the inadequate myogenic activity of muscle resident stem cells (i.e., satellite cells). Laminin (LM) is a heterotrimeric structural protein in the satellite cell niche that is crucial for maintaining its function. In this study, we created hydrogels composed of poly (ethylene glycol) (PEG) and LM-111 to provide an elastic substrate for satellite cell proliferation at the site of injury. The PEG-LM111 conjugates were mixed with 5% and 10% (w/v) pure PEG-diacrylate (PEGDA) and photopolymerized to form 5% and 10% PEGLM gels. Pure 5% and 10% PEGDA gels were used as controls. The modulus of both hydrogels containing 10% (w/v) PEGDA was significantly higher than the hydrogels containing 5% (w/v) PEGDA. The 5% PEGLM hydrogels showed significantly higher swelling in aqueous medium suggesting a more porous structure. C2C12 myoblasts cultured on the softer 5% PEGLM hydrogels showed a flat and spread-out morphology when compared to the rounded, multicell clusters formed on the 5% PEGDA, 10% PEGDA, and 10% PEGLM hydrogels. The 5% PEGLM hydrogels also promoted a significant increase in both vascular endothelial growth factor and interleukin-6 (IL-6) production from the myoblasts. Additionally, the expression of MyoD was significantly higher while that of myogenin and -actinin trended higher on the 5% PEGLM hydrogels compared to 5% PEGDA on day 5. Our data suggests that the introduction of LM-111 into compliant PEG hydrogels promoted myoblast adhesion, survival, pro-regenerative growth factor production, and myogenic activity. |
---|---|
ISSN: | 1748-605X 1748-605X |
DOI: | 10.1088/1748-605X/aad915 |