Loading…
Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads
Many non-model organisms lack reference genomes and the sequencing and de novo assembly of an organisms transcriptome is an affordable means by which to characterize the coding component of its genome. Despite the advances that have made this possible, assembling a transcriptome without a known refe...
Saved in:
Published in: | IEEE/ACM transactions on computational biology and bioinformatics 2019-05, Vol.16 (3), p.1036-1041 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403 |
container_end_page | 1041 |
container_issue | 3 |
container_start_page | 1036 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 16 |
creator | Singh, Kumar Saurabh Troczka, Bartlomiej J. Beadle, Katherine Field, Linda M. Davies, T. G. Emyr Williamson, Martin S. Nauen, Ralf Bass, Chris |
description | Many non-model organisms lack reference genomes and the sequencing and de novo assembly of an organisms transcriptome is an affordable means by which to characterize the coding component of its genome. Despite the advances that have made this possible, assembling a transcriptome without a known reference usually results in a collection of full-length and partial gene transcripts. The downstream analysis of genes represented as partial transcripts then often requires further experimental work in the laboratory in order to obtain full- length sequences. We have explored whether partial transcripts, encoding genes of interest present in de novo assembled transcriptomes of a model and non-model insect species, could be further extended by iterative mapping against the raw transcriptome sequencing reads. Partial sequences encoding cytochrome P450s and carboxyl/cholinesterase were used in this analysis, because they are large multigene families and exhibit significant variation in expression. We present an effective method to improve the contiguity of partial transcripts in silico that, in the absence of a reference genome, may be a quick and cost-effective alternative to their extension by laboratory experimentation. Our approach resulted in the successful extension of incompletely assembled transcripts, often to full length. We experimentally validated these results in silico and using real-time PCR and sequencing. |
doi_str_mv | 10.1109/TCBB.2018.2865309 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30106739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8434319</ieee_id><sourcerecordid>2237692766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403</originalsourceid><addsrcrecordid>eNpdkNtKw0AQhhdRPFQfQARZ8Mab1D0m2cu21APUAzX3yySZSKRN0t3Ew9ub0OqFVzMw3_8zfIScczbmnJmbZDadjgXj8VjEoZbM7JFjrnUUGBOq_WFXOtAmlEfkxPt3xoQyTB2SI8k4CyNpjsnz_KvFypd1ReuCvoBrS1jRO6yQJg4qn7myaT1Nv-lDiw7a8gPpIzRNWb0NgeXTJHjFDV3CJ10i5P6UHBSw8ni2myOS3M6T2X2weL57mE0WQSaNaIOIgxAsNSJjUDClUEYAShZ5IRBASuwpiHWe5lzyVMVGa1GoNBNSGKGYHJHrbW3j6k2HvrXr0me4WkGFdeetYHEcadXL6NGrf-h73bmqf84KIaPQiCgMe4pvqczV3jssbOPKNbhvy5kdZNtBth1k253sPnO5a-7SNeZ_iV-7PXCxBUpE_DvHSirJjfwB3XiAjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237692766</pqid></control><display><type>article</type><title>Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Singh, Kumar Saurabh ; Troczka, Bartlomiej J. ; Beadle, Katherine ; Field, Linda M. ; Davies, T. G. Emyr ; Williamson, Martin S. ; Nauen, Ralf ; Bass, Chris</creator><creatorcontrib>Singh, Kumar Saurabh ; Troczka, Bartlomiej J. ; Beadle, Katherine ; Field, Linda M. ; Davies, T. G. Emyr ; Williamson, Martin S. ; Nauen, Ralf ; Bass, Chris</creatorcontrib><description>Many non-model organisms lack reference genomes and the sequencing and de novo assembly of an organisms transcriptome is an affordable means by which to characterize the coding component of its genome. Despite the advances that have made this possible, assembling a transcriptome without a known reference usually results in a collection of full-length and partial gene transcripts. The downstream analysis of genes represented as partial transcripts then often requires further experimental work in the laboratory in order to obtain full- length sequences. We have explored whether partial transcripts, encoding genes of interest present in de novo assembled transcriptomes of a model and non-model insect species, could be further extended by iterative mapping against the raw transcriptome sequencing reads. Partial sequences encoding cytochrome P450s and carboxyl/cholinesterase were used in this analysis, because they are large multigene families and exhibit significant variation in expression. We present an effective method to improve the contiguity of partial transcripts in silico that, in the absence of a reference genome, may be a quick and cost-effective alternative to their extension by laboratory experimentation. Our approach resulted in the successful extension of incompletely assembled transcripts, often to full length. We experimentally validated these results in silico and using real-time PCR and sequencing.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2018.2865309</identifier><identifier>PMID: 30106739</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Assembling ; Cholinesterase ; Cytochrome ; Cytochromes ; de novo transcriptome assembly ; detoxification genes ; Encoding ; Experimentation ; Gene expression ; Gene mapping ; Gene sequencing ; Genes ; Genomes ; Genomics ; Insects ; Iterative methods ; iterative read mapping ; Laboratories ; Mapping ; Ribonucleic acid ; RNA ; RNA sequencing ; RNASeq ; Sequential analysis ; transcript extension</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2019-05, Vol.16 (3), p.1036-1041</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403</citedby><cites>FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403</cites><orcidid>0000-0002-9452-2947 ; 0000-0001-8352-5897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8434319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30106739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Kumar Saurabh</creatorcontrib><creatorcontrib>Troczka, Bartlomiej J.</creatorcontrib><creatorcontrib>Beadle, Katherine</creatorcontrib><creatorcontrib>Field, Linda M.</creatorcontrib><creatorcontrib>Davies, T. G. Emyr</creatorcontrib><creatorcontrib>Williamson, Martin S.</creatorcontrib><creatorcontrib>Nauen, Ralf</creatorcontrib><creatorcontrib>Bass, Chris</creatorcontrib><title>Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Many non-model organisms lack reference genomes and the sequencing and de novo assembly of an organisms transcriptome is an affordable means by which to characterize the coding component of its genome. Despite the advances that have made this possible, assembling a transcriptome without a known reference usually results in a collection of full-length and partial gene transcripts. The downstream analysis of genes represented as partial transcripts then often requires further experimental work in the laboratory in order to obtain full- length sequences. We have explored whether partial transcripts, encoding genes of interest present in de novo assembled transcriptomes of a model and non-model insect species, could be further extended by iterative mapping against the raw transcriptome sequencing reads. Partial sequences encoding cytochrome P450s and carboxyl/cholinesterase were used in this analysis, because they are large multigene families and exhibit significant variation in expression. We present an effective method to improve the contiguity of partial transcripts in silico that, in the absence of a reference genome, may be a quick and cost-effective alternative to their extension by laboratory experimentation. Our approach resulted in the successful extension of incompletely assembled transcripts, often to full length. We experimentally validated these results in silico and using real-time PCR and sequencing.</description><subject>Assembling</subject><subject>Cholinesterase</subject><subject>Cytochrome</subject><subject>Cytochromes</subject><subject>de novo transcriptome assembly</subject><subject>detoxification genes</subject><subject>Encoding</subject><subject>Experimentation</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Insects</subject><subject>Iterative methods</subject><subject>iterative read mapping</subject><subject>Laboratories</subject><subject>Mapping</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNASeq</subject><subject>Sequential analysis</subject><subject>transcript extension</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkNtKw0AQhhdRPFQfQARZ8Mab1D0m2cu21APUAzX3yySZSKRN0t3Ew9ub0OqFVzMw3_8zfIScczbmnJmbZDadjgXj8VjEoZbM7JFjrnUUGBOq_WFXOtAmlEfkxPt3xoQyTB2SI8k4CyNpjsnz_KvFypd1ReuCvoBrS1jRO6yQJg4qn7myaT1Nv-lDiw7a8gPpIzRNWb0NgeXTJHjFDV3CJ10i5P6UHBSw8ni2myOS3M6T2X2weL57mE0WQSaNaIOIgxAsNSJjUDClUEYAShZ5IRBASuwpiHWe5lzyVMVGa1GoNBNSGKGYHJHrbW3j6k2HvrXr0me4WkGFdeetYHEcadXL6NGrf-h73bmqf84KIaPQiCgMe4pvqczV3jssbOPKNbhvy5kdZNtBth1k253sPnO5a-7SNeZ_iV-7PXCxBUpE_DvHSirJjfwB3XiAjw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Singh, Kumar Saurabh</creator><creator>Troczka, Bartlomiej J.</creator><creator>Beadle, Katherine</creator><creator>Field, Linda M.</creator><creator>Davies, T. G. Emyr</creator><creator>Williamson, Martin S.</creator><creator>Nauen, Ralf</creator><creator>Bass, Chris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9452-2947</orcidid><orcidid>https://orcid.org/0000-0001-8352-5897</orcidid></search><sort><creationdate>20190501</creationdate><title>Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads</title><author>Singh, Kumar Saurabh ; Troczka, Bartlomiej J. ; Beadle, Katherine ; Field, Linda M. ; Davies, T. G. Emyr ; Williamson, Martin S. ; Nauen, Ralf ; Bass, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assembling</topic><topic>Cholinesterase</topic><topic>Cytochrome</topic><topic>Cytochromes</topic><topic>de novo transcriptome assembly</topic><topic>detoxification genes</topic><topic>Encoding</topic><topic>Experimentation</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Insects</topic><topic>Iterative methods</topic><topic>iterative read mapping</topic><topic>Laboratories</topic><topic>Mapping</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNASeq</topic><topic>Sequential analysis</topic><topic>transcript extension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Kumar Saurabh</creatorcontrib><creatorcontrib>Troczka, Bartlomiej J.</creatorcontrib><creatorcontrib>Beadle, Katherine</creatorcontrib><creatorcontrib>Field, Linda M.</creatorcontrib><creatorcontrib>Davies, T. G. Emyr</creatorcontrib><creatorcontrib>Williamson, Martin S.</creatorcontrib><creatorcontrib>Nauen, Ralf</creatorcontrib><creatorcontrib>Bass, Chris</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Kumar Saurabh</au><au>Troczka, Bartlomiej J.</au><au>Beadle, Katherine</au><au>Field, Linda M.</au><au>Davies, T. G. Emyr</au><au>Williamson, Martin S.</au><au>Nauen, Ralf</au><au>Bass, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>16</volume><issue>3</issue><spage>1036</spage><epage>1041</epage><pages>1036-1041</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Many non-model organisms lack reference genomes and the sequencing and de novo assembly of an organisms transcriptome is an affordable means by which to characterize the coding component of its genome. Despite the advances that have made this possible, assembling a transcriptome without a known reference usually results in a collection of full-length and partial gene transcripts. The downstream analysis of genes represented as partial transcripts then often requires further experimental work in the laboratory in order to obtain full- length sequences. We have explored whether partial transcripts, encoding genes of interest present in de novo assembled transcriptomes of a model and non-model insect species, could be further extended by iterative mapping against the raw transcriptome sequencing reads. Partial sequences encoding cytochrome P450s and carboxyl/cholinesterase were used in this analysis, because they are large multigene families and exhibit significant variation in expression. We present an effective method to improve the contiguity of partial transcripts in silico that, in the absence of a reference genome, may be a quick and cost-effective alternative to their extension by laboratory experimentation. Our approach resulted in the successful extension of incompletely assembled transcripts, often to full length. We experimentally validated these results in silico and using real-time PCR and sequencing.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30106739</pmid><doi>10.1109/TCBB.2018.2865309</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9452-2947</orcidid><orcidid>https://orcid.org/0000-0001-8352-5897</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2019-05, Vol.16 (3), p.1036-1041 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_pubmed_primary_30106739 |
source | IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Assembling Cholinesterase Cytochrome Cytochromes de novo transcriptome assembly detoxification genes Encoding Experimentation Gene expression Gene mapping Gene sequencing Genes Genomes Genomics Insects Iterative methods iterative read mapping Laboratories Mapping Ribonucleic acid RNA RNA sequencing RNASeq Sequential analysis transcript extension |
title | Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20Partial%20Gene%20Transcripts%20by%20Iterative%20Mapping%20of%20RNA-Seq%20Raw%20Reads&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Singh,%20Kumar%20Saurabh&rft.date=2019-05-01&rft.volume=16&rft.issue=3&rft.spage=1036&rft.epage=1041&rft.pages=1036-1041&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2018.2865309&rft_dat=%3Cproquest_pubme%3E2237692766%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2237692766&rft_id=info:pmid/30106739&rft_ieee_id=8434319&rfr_iscdi=true |