Loading…

Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads

Many non-model organisms lack reference genomes and the sequencing and de novo assembly of an organisms transcriptome is an affordable means by which to characterize the coding component of its genome. Despite the advances that have made this possible, assembling a transcriptome without a known refe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics 2019-05, Vol.16 (3), p.1036-1041
Main Authors: Singh, Kumar Saurabh, Troczka, Bartlomiej J., Beadle, Katherine, Field, Linda M., Davies, T. G. Emyr, Williamson, Martin S., Nauen, Ralf, Bass, Chris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403
cites cdi_FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403
container_end_page 1041
container_issue 3
container_start_page 1036
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 16
creator Singh, Kumar Saurabh
Troczka, Bartlomiej J.
Beadle, Katherine
Field, Linda M.
Davies, T. G. Emyr
Williamson, Martin S.
Nauen, Ralf
Bass, Chris
description Many non-model organisms lack reference genomes and the sequencing and de novo assembly of an organisms transcriptome is an affordable means by which to characterize the coding component of its genome. Despite the advances that have made this possible, assembling a transcriptome without a known reference usually results in a collection of full-length and partial gene transcripts. The downstream analysis of genes represented as partial transcripts then often requires further experimental work in the laboratory in order to obtain full- length sequences. We have explored whether partial transcripts, encoding genes of interest present in de novo assembled transcriptomes of a model and non-model insect species, could be further extended by iterative mapping against the raw transcriptome sequencing reads. Partial sequences encoding cytochrome P450s and carboxyl/cholinesterase were used in this analysis, because they are large multigene families and exhibit significant variation in expression. We present an effective method to improve the contiguity of partial transcripts in silico that, in the absence of a reference genome, may be a quick and cost-effective alternative to their extension by laboratory experimentation. Our approach resulted in the successful extension of incompletely assembled transcripts, often to full length. We experimentally validated these results in silico and using real-time PCR and sequencing.
doi_str_mv 10.1109/TCBB.2018.2865309
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30106739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8434319</ieee_id><sourcerecordid>2237692766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403</originalsourceid><addsrcrecordid>eNpdkNtKw0AQhhdRPFQfQARZ8Mab1D0m2cu21APUAzX3yySZSKRN0t3Ew9ub0OqFVzMw3_8zfIScczbmnJmbZDadjgXj8VjEoZbM7JFjrnUUGBOq_WFXOtAmlEfkxPt3xoQyTB2SI8k4CyNpjsnz_KvFypd1ReuCvoBrS1jRO6yQJg4qn7myaT1Nv-lDiw7a8gPpIzRNWb0NgeXTJHjFDV3CJ10i5P6UHBSw8ni2myOS3M6T2X2weL57mE0WQSaNaIOIgxAsNSJjUDClUEYAShZ5IRBASuwpiHWe5lzyVMVGa1GoNBNSGKGYHJHrbW3j6k2HvrXr0me4WkGFdeetYHEcadXL6NGrf-h73bmqf84KIaPQiCgMe4pvqczV3jssbOPKNbhvy5kdZNtBth1k253sPnO5a-7SNeZ_iV-7PXCxBUpE_DvHSirJjfwB3XiAjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237692766</pqid></control><display><type>article</type><title>Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Singh, Kumar Saurabh ; Troczka, Bartlomiej J. ; Beadle, Katherine ; Field, Linda M. ; Davies, T. G. Emyr ; Williamson, Martin S. ; Nauen, Ralf ; Bass, Chris</creator><creatorcontrib>Singh, Kumar Saurabh ; Troczka, Bartlomiej J. ; Beadle, Katherine ; Field, Linda M. ; Davies, T. G. Emyr ; Williamson, Martin S. ; Nauen, Ralf ; Bass, Chris</creatorcontrib><description>Many non-model organisms lack reference genomes and the sequencing and de novo assembly of an organisms transcriptome is an affordable means by which to characterize the coding component of its genome. Despite the advances that have made this possible, assembling a transcriptome without a known reference usually results in a collection of full-length and partial gene transcripts. The downstream analysis of genes represented as partial transcripts then often requires further experimental work in the laboratory in order to obtain full- length sequences. We have explored whether partial transcripts, encoding genes of interest present in de novo assembled transcriptomes of a model and non-model insect species, could be further extended by iterative mapping against the raw transcriptome sequencing reads. Partial sequences encoding cytochrome P450s and carboxyl/cholinesterase were used in this analysis, because they are large multigene families and exhibit significant variation in expression. We present an effective method to improve the contiguity of partial transcripts in silico that, in the absence of a reference genome, may be a quick and cost-effective alternative to their extension by laboratory experimentation. Our approach resulted in the successful extension of incompletely assembled transcripts, often to full length. We experimentally validated these results in silico and using real-time PCR and sequencing.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2018.2865309</identifier><identifier>PMID: 30106739</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Assembling ; Cholinesterase ; Cytochrome ; Cytochromes ; de novo transcriptome assembly ; detoxification genes ; Encoding ; Experimentation ; Gene expression ; Gene mapping ; Gene sequencing ; Genes ; Genomes ; Genomics ; Insects ; Iterative methods ; iterative read mapping ; Laboratories ; Mapping ; Ribonucleic acid ; RNA ; RNA sequencing ; RNASeq ; Sequential analysis ; transcript extension</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2019-05, Vol.16 (3), p.1036-1041</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403</citedby><cites>FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403</cites><orcidid>0000-0002-9452-2947 ; 0000-0001-8352-5897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8434319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30106739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Kumar Saurabh</creatorcontrib><creatorcontrib>Troczka, Bartlomiej J.</creatorcontrib><creatorcontrib>Beadle, Katherine</creatorcontrib><creatorcontrib>Field, Linda M.</creatorcontrib><creatorcontrib>Davies, T. G. Emyr</creatorcontrib><creatorcontrib>Williamson, Martin S.</creatorcontrib><creatorcontrib>Nauen, Ralf</creatorcontrib><creatorcontrib>Bass, Chris</creatorcontrib><title>Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Many non-model organisms lack reference genomes and the sequencing and de novo assembly of an organisms transcriptome is an affordable means by which to characterize the coding component of its genome. Despite the advances that have made this possible, assembling a transcriptome without a known reference usually results in a collection of full-length and partial gene transcripts. The downstream analysis of genes represented as partial transcripts then often requires further experimental work in the laboratory in order to obtain full- length sequences. We have explored whether partial transcripts, encoding genes of interest present in de novo assembled transcriptomes of a model and non-model insect species, could be further extended by iterative mapping against the raw transcriptome sequencing reads. Partial sequences encoding cytochrome P450s and carboxyl/cholinesterase were used in this analysis, because they are large multigene families and exhibit significant variation in expression. We present an effective method to improve the contiguity of partial transcripts in silico that, in the absence of a reference genome, may be a quick and cost-effective alternative to their extension by laboratory experimentation. Our approach resulted in the successful extension of incompletely assembled transcripts, often to full length. We experimentally validated these results in silico and using real-time PCR and sequencing.</description><subject>Assembling</subject><subject>Cholinesterase</subject><subject>Cytochrome</subject><subject>Cytochromes</subject><subject>de novo transcriptome assembly</subject><subject>detoxification genes</subject><subject>Encoding</subject><subject>Experimentation</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Insects</subject><subject>Iterative methods</subject><subject>iterative read mapping</subject><subject>Laboratories</subject><subject>Mapping</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNASeq</subject><subject>Sequential analysis</subject><subject>transcript extension</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkNtKw0AQhhdRPFQfQARZ8Mab1D0m2cu21APUAzX3yySZSKRN0t3Ew9ub0OqFVzMw3_8zfIScczbmnJmbZDadjgXj8VjEoZbM7JFjrnUUGBOq_WFXOtAmlEfkxPt3xoQyTB2SI8k4CyNpjsnz_KvFypd1ReuCvoBrS1jRO6yQJg4qn7myaT1Nv-lDiw7a8gPpIzRNWb0NgeXTJHjFDV3CJ10i5P6UHBSw8ni2myOS3M6T2X2weL57mE0WQSaNaIOIgxAsNSJjUDClUEYAShZ5IRBASuwpiHWe5lzyVMVGa1GoNBNSGKGYHJHrbW3j6k2HvrXr0me4WkGFdeetYHEcadXL6NGrf-h73bmqf84KIaPQiCgMe4pvqczV3jssbOPKNbhvy5kdZNtBth1k253sPnO5a-7SNeZ_iV-7PXCxBUpE_DvHSirJjfwB3XiAjw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Singh, Kumar Saurabh</creator><creator>Troczka, Bartlomiej J.</creator><creator>Beadle, Katherine</creator><creator>Field, Linda M.</creator><creator>Davies, T. G. Emyr</creator><creator>Williamson, Martin S.</creator><creator>Nauen, Ralf</creator><creator>Bass, Chris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9452-2947</orcidid><orcidid>https://orcid.org/0000-0001-8352-5897</orcidid></search><sort><creationdate>20190501</creationdate><title>Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads</title><author>Singh, Kumar Saurabh ; Troczka, Bartlomiej J. ; Beadle, Katherine ; Field, Linda M. ; Davies, T. G. Emyr ; Williamson, Martin S. ; Nauen, Ralf ; Bass, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Assembling</topic><topic>Cholinesterase</topic><topic>Cytochrome</topic><topic>Cytochromes</topic><topic>de novo transcriptome assembly</topic><topic>detoxification genes</topic><topic>Encoding</topic><topic>Experimentation</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Insects</topic><topic>Iterative methods</topic><topic>iterative read mapping</topic><topic>Laboratories</topic><topic>Mapping</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNASeq</topic><topic>Sequential analysis</topic><topic>transcript extension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Kumar Saurabh</creatorcontrib><creatorcontrib>Troczka, Bartlomiej J.</creatorcontrib><creatorcontrib>Beadle, Katherine</creatorcontrib><creatorcontrib>Field, Linda M.</creatorcontrib><creatorcontrib>Davies, T. G. Emyr</creatorcontrib><creatorcontrib>Williamson, Martin S.</creatorcontrib><creatorcontrib>Nauen, Ralf</creatorcontrib><creatorcontrib>Bass, Chris</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Kumar Saurabh</au><au>Troczka, Bartlomiej J.</au><au>Beadle, Katherine</au><au>Field, Linda M.</au><au>Davies, T. G. Emyr</au><au>Williamson, Martin S.</au><au>Nauen, Ralf</au><au>Bass, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>16</volume><issue>3</issue><spage>1036</spage><epage>1041</epage><pages>1036-1041</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Many non-model organisms lack reference genomes and the sequencing and de novo assembly of an organisms transcriptome is an affordable means by which to characterize the coding component of its genome. Despite the advances that have made this possible, assembling a transcriptome without a known reference usually results in a collection of full-length and partial gene transcripts. The downstream analysis of genes represented as partial transcripts then often requires further experimental work in the laboratory in order to obtain full- length sequences. We have explored whether partial transcripts, encoding genes of interest present in de novo assembled transcriptomes of a model and non-model insect species, could be further extended by iterative mapping against the raw transcriptome sequencing reads. Partial sequences encoding cytochrome P450s and carboxyl/cholinesterase were used in this analysis, because they are large multigene families and exhibit significant variation in expression. We present an effective method to improve the contiguity of partial transcripts in silico that, in the absence of a reference genome, may be a quick and cost-effective alternative to their extension by laboratory experimentation. Our approach resulted in the successful extension of incompletely assembled transcripts, often to full length. We experimentally validated these results in silico and using real-time PCR and sequencing.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30106739</pmid><doi>10.1109/TCBB.2018.2865309</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9452-2947</orcidid><orcidid>https://orcid.org/0000-0001-8352-5897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2019-05, Vol.16 (3), p.1036-1041
issn 1545-5963
1557-9964
language eng
recordid cdi_pubmed_primary_30106739
source IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Assembling
Cholinesterase
Cytochrome
Cytochromes
de novo transcriptome assembly
detoxification genes
Encoding
Experimentation
Gene expression
Gene mapping
Gene sequencing
Genes
Genomes
Genomics
Insects
Iterative methods
iterative read mapping
Laboratories
Mapping
Ribonucleic acid
RNA
RNA sequencing
RNASeq
Sequential analysis
transcript extension
title Extension of Partial Gene Transcripts by Iterative Mapping of RNA-Seq Raw Reads
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20Partial%20Gene%20Transcripts%20by%20Iterative%20Mapping%20of%20RNA-Seq%20Raw%20Reads&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Singh,%20Kumar%20Saurabh&rft.date=2019-05-01&rft.volume=16&rft.issue=3&rft.spage=1036&rft.epage=1041&rft.pages=1036-1041&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2018.2865309&rft_dat=%3Cproquest_pubme%3E2237692766%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-71a220b92c0af044e37aa43fdf2eaa33e392a85dbd131b489552f4bc23292403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2237692766&rft_id=info:pmid/30106739&rft_ieee_id=8434319&rfr_iscdi=true