Loading…

Understanding diseases as increased heterogeneity: a complex network computational framework

Owing to the complexity of the human body, most diseases present a high interpersonal variability in the way they manifest, i.e. in their phenotype, which has important clinical repercussions—for instance, the difficulty in defining objective diagnostic rules. Here we explore the hypothesis that sig...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Society interface 2018-08, Vol.15 (145), p.20180405
Main Authors: Zanin, Massimiliano, Tuñas, Juan Manuel, Menasalvas, Ernestina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63
cites cdi_FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63
container_end_page
container_issue 145
container_start_page 20180405
container_title Journal of the Royal Society interface
container_volume 15
creator Zanin, Massimiliano
Tuñas, Juan Manuel
Menasalvas, Ernestina
description Owing to the complexity of the human body, most diseases present a high interpersonal variability in the way they manifest, i.e. in their phenotype, which has important clinical repercussions—for instance, the difficulty in defining objective diagnostic rules. Here we explore the hypothesis that signs and symptoms used to define a disease should be understood in terms of the dispersion (as opposed to the average) of physical observables. To that end, we propose a computational framework, based on complex networks theory, to map groups of subjects to a network structure, based on their pairwise phenotypical similarity. We demonstrate that the resulting structure can be used to improve the performance of classification algorithms, especially in the case of a limited number of instances, with both synthetic and real datasets. Beyond providing an alternative conceptual understanding of diseases, the proposed framework could be of special relevance in the growing field of personalized, or N-to-1, medicine.
doi_str_mv 10.1098/rsif.2018.0405
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30111665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089284603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqVw5Yhy5LKLP2LH5oCEKgqVKiEBvSFZE3uydUnsxXYKy68nYcuKCsHJM-PH847nraqnlKwp0epFyr5fM0LVmjRE3KuOaduwlZCS3T_ESh9Vj3K-JoS3XIiH1REnlFIpxXH1-TI4TLlAcD5sauczQsZcQ659sGlJXH2FBVPcYEBfdi9rqG0ctwN-rwOWbzF9-ZVPBYqPAYa6TzDiUn9cPehhyPjk9jypLs_efDp9t7p4__b89PXFygoty0pLpfoWur7tLOusYrRRVkCrNO_aDgFawcFR6ZRuNLquZ70QjirXoAYJkp9Ur_Z9t1M3orMYSoLBbJMfIe1MBG_u3gR_ZTbxxkjKWqrY3OD5bYMUv06Yixl9tjgMEDBO2TCiNFONJHxG13vUpphzwv4gQ4lZLDGLJWaxxCyWzA-e_TncAf_twQxs9kCKu3lL0XosO3MdpzQvM5sPH8_PbqjwtBGGKE6JaPgc_vDbvRIVxuc8oVmAu9p_j8L_p_SPD_wEZdG_Qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089284603</pqid></control><display><type>article</type><title>Understanding diseases as increased heterogeneity: a complex network computational framework</title><source>PubMed Central</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Zanin, Massimiliano ; Tuñas, Juan Manuel ; Menasalvas, Ernestina</creator><creatorcontrib>Zanin, Massimiliano ; Tuñas, Juan Manuel ; Menasalvas, Ernestina</creatorcontrib><description>Owing to the complexity of the human body, most diseases present a high interpersonal variability in the way they manifest, i.e. in their phenotype, which has important clinical repercussions—for instance, the difficulty in defining objective diagnostic rules. Here we explore the hypothesis that signs and symptoms used to define a disease should be understood in terms of the dispersion (as opposed to the average) of physical observables. To that end, we propose a computational framework, based on complex networks theory, to map groups of subjects to a network structure, based on their pairwise phenotypical similarity. We demonstrate that the resulting structure can be used to improve the performance of classification algorithms, especially in the case of a limited number of instances, with both synthetic and real datasets. Beyond providing an alternative conceptual understanding of diseases, the proposed framework could be of special relevance in the growing field of personalized, or N-to-1, medicine.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2018.0405</identifier><identifier>PMID: 30111665</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Complex Networks ; Data Analysis ; Life Sciences–Mathematics interface ; Personalized Medicine</subject><ispartof>Journal of the Royal Society interface, 2018-08, Vol.15 (145), p.20180405</ispartof><rights>2018 The Author(s)</rights><rights>2018 The Author(s).</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63</citedby><cites>FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63</cites><orcidid>0000-0002-5839-0393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127182/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127182/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30111665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanin, Massimiliano</creatorcontrib><creatorcontrib>Tuñas, Juan Manuel</creatorcontrib><creatorcontrib>Menasalvas, Ernestina</creatorcontrib><title>Understanding diseases as increased heterogeneity: a complex network computational framework</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J R Soc Interface</addtitle><description>Owing to the complexity of the human body, most diseases present a high interpersonal variability in the way they manifest, i.e. in their phenotype, which has important clinical repercussions—for instance, the difficulty in defining objective diagnostic rules. Here we explore the hypothesis that signs and symptoms used to define a disease should be understood in terms of the dispersion (as opposed to the average) of physical observables. To that end, we propose a computational framework, based on complex networks theory, to map groups of subjects to a network structure, based on their pairwise phenotypical similarity. We demonstrate that the resulting structure can be used to improve the performance of classification algorithms, especially in the case of a limited number of instances, with both synthetic and real datasets. Beyond providing an alternative conceptual understanding of diseases, the proposed framework could be of special relevance in the growing field of personalized, or N-to-1, medicine.</description><subject>Complex Networks</subject><subject>Data Analysis</subject><subject>Life Sciences–Mathematics interface</subject><subject>Personalized Medicine</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEoqVw5Yhy5LKLP2LH5oCEKgqVKiEBvSFZE3uydUnsxXYKy68nYcuKCsHJM-PH847nraqnlKwp0epFyr5fM0LVmjRE3KuOaduwlZCS3T_ESh9Vj3K-JoS3XIiH1REnlFIpxXH1-TI4TLlAcD5sauczQsZcQ659sGlJXH2FBVPcYEBfdi9rqG0ctwN-rwOWbzF9-ZVPBYqPAYa6TzDiUn9cPehhyPjk9jypLs_efDp9t7p4__b89PXFygoty0pLpfoWur7tLOusYrRRVkCrNO_aDgFawcFR6ZRuNLquZ70QjirXoAYJkp9Ur_Z9t1M3orMYSoLBbJMfIe1MBG_u3gR_ZTbxxkjKWqrY3OD5bYMUv06Yixl9tjgMEDBO2TCiNFONJHxG13vUpphzwv4gQ4lZLDGLJWaxxCyWzA-e_TncAf_twQxs9kCKu3lL0XosO3MdpzQvM5sPH8_PbqjwtBGGKE6JaPgc_vDbvRIVxuc8oVmAu9p_j8L_p_SPD_wEZdG_Qg</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Zanin, Massimiliano</creator><creator>Tuñas, Juan Manuel</creator><creator>Menasalvas, Ernestina</creator><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5839-0393</orcidid></search><sort><creationdate>20180801</creationdate><title>Understanding diseases as increased heterogeneity: a complex network computational framework</title><author>Zanin, Massimiliano ; Tuñas, Juan Manuel ; Menasalvas, Ernestina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complex Networks</topic><topic>Data Analysis</topic><topic>Life Sciences–Mathematics interface</topic><topic>Personalized Medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanin, Massimiliano</creatorcontrib><creatorcontrib>Tuñas, Juan Manuel</creatorcontrib><creatorcontrib>Menasalvas, Ernestina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanin, Massimiliano</au><au>Tuñas, Juan Manuel</au><au>Menasalvas, Ernestina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding diseases as increased heterogeneity: a complex network computational framework</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J R Soc Interface</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>15</volume><issue>145</issue><spage>20180405</spage><pages>20180405-</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Owing to the complexity of the human body, most diseases present a high interpersonal variability in the way they manifest, i.e. in their phenotype, which has important clinical repercussions—for instance, the difficulty in defining objective diagnostic rules. Here we explore the hypothesis that signs and symptoms used to define a disease should be understood in terms of the dispersion (as opposed to the average) of physical observables. To that end, we propose a computational framework, based on complex networks theory, to map groups of subjects to a network structure, based on their pairwise phenotypical similarity. We demonstrate that the resulting structure can be used to improve the performance of classification algorithms, especially in the case of a limited number of instances, with both synthetic and real datasets. Beyond providing an alternative conceptual understanding of diseases, the proposed framework could be of special relevance in the growing field of personalized, or N-to-1, medicine.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>30111665</pmid><doi>10.1098/rsif.2018.0405</doi><orcidid>https://orcid.org/0000-0002-5839-0393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2018-08, Vol.15 (145), p.20180405
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmed_primary_30111665
source PubMed Central; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Complex Networks
Data Analysis
Life Sciences–Mathematics interface
Personalized Medicine
title Understanding diseases as increased heterogeneity: a complex network computational framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20diseases%20as%20increased%20heterogeneity:%20a%20complex%20network%20computational%20framework&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Zanin,%20Massimiliano&rft.date=2018-08-01&rft.volume=15&rft.issue=145&rft.spage=20180405&rft.pages=20180405-&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2018.0405&rft_dat=%3Cproquest_pubme%3E2089284603%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089284603&rft_id=info:pmid/30111665&rfr_iscdi=true