Loading…
Understanding diseases as increased heterogeneity: a complex network computational framework
Owing to the complexity of the human body, most diseases present a high interpersonal variability in the way they manifest, i.e. in their phenotype, which has important clinical repercussions—for instance, the difficulty in defining objective diagnostic rules. Here we explore the hypothesis that sig...
Saved in:
Published in: | Journal of the Royal Society interface 2018-08, Vol.15 (145), p.20180405 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63 |
---|---|
cites | cdi_FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63 |
container_end_page | |
container_issue | 145 |
container_start_page | 20180405 |
container_title | Journal of the Royal Society interface |
container_volume | 15 |
creator | Zanin, Massimiliano Tuñas, Juan Manuel Menasalvas, Ernestina |
description | Owing to the complexity of the human body, most diseases present a high interpersonal variability in the way they manifest, i.e. in their phenotype, which has important clinical repercussions—for instance, the difficulty in defining objective diagnostic rules. Here we explore the hypothesis that signs and symptoms used to define a disease should be understood in terms of the dispersion (as opposed to the average) of physical observables. To that end, we propose a computational framework, based on complex networks theory, to map groups of subjects to a network structure, based on their pairwise phenotypical similarity. We demonstrate that the resulting structure can be used to improve the performance of classification algorithms, especially in the case of a limited number of instances, with both synthetic and real datasets. Beyond providing an alternative conceptual understanding of diseases, the proposed framework could be of special relevance in the growing field of personalized, or N-to-1, medicine. |
doi_str_mv | 10.1098/rsif.2018.0405 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30111665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089284603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqVw5Yhy5LKLP2LH5oCEKgqVKiEBvSFZE3uydUnsxXYKy68nYcuKCsHJM-PH847nraqnlKwp0epFyr5fM0LVmjRE3KuOaduwlZCS3T_ESh9Vj3K-JoS3XIiH1REnlFIpxXH1-TI4TLlAcD5sauczQsZcQ659sGlJXH2FBVPcYEBfdi9rqG0ctwN-rwOWbzF9-ZVPBYqPAYa6TzDiUn9cPehhyPjk9jypLs_efDp9t7p4__b89PXFygoty0pLpfoWur7tLOusYrRRVkCrNO_aDgFawcFR6ZRuNLquZ70QjirXoAYJkp9Ur_Z9t1M3orMYSoLBbJMfIe1MBG_u3gR_ZTbxxkjKWqrY3OD5bYMUv06Yixl9tjgMEDBO2TCiNFONJHxG13vUpphzwv4gQ4lZLDGLJWaxxCyWzA-e_TncAf_twQxs9kCKu3lL0XosO3MdpzQvM5sPH8_PbqjwtBGGKE6JaPgc_vDbvRIVxuc8oVmAu9p_j8L_p_SPD_wEZdG_Qg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089284603</pqid></control><display><type>article</type><title>Understanding diseases as increased heterogeneity: a complex network computational framework</title><source>PubMed Central</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Zanin, Massimiliano ; Tuñas, Juan Manuel ; Menasalvas, Ernestina</creator><creatorcontrib>Zanin, Massimiliano ; Tuñas, Juan Manuel ; Menasalvas, Ernestina</creatorcontrib><description>Owing to the complexity of the human body, most diseases present a high interpersonal variability in the way they manifest, i.e. in their phenotype, which has important clinical repercussions—for instance, the difficulty in defining objective diagnostic rules. Here we explore the hypothesis that signs and symptoms used to define a disease should be understood in terms of the dispersion (as opposed to the average) of physical observables. To that end, we propose a computational framework, based on complex networks theory, to map groups of subjects to a network structure, based on their pairwise phenotypical similarity. We demonstrate that the resulting structure can be used to improve the performance of classification algorithms, especially in the case of a limited number of instances, with both synthetic and real datasets. Beyond providing an alternative conceptual understanding of diseases, the proposed framework could be of special relevance in the growing field of personalized, or N-to-1, medicine.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2018.0405</identifier><identifier>PMID: 30111665</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Complex Networks ; Data Analysis ; Life Sciences–Mathematics interface ; Personalized Medicine</subject><ispartof>Journal of the Royal Society interface, 2018-08, Vol.15 (145), p.20180405</ispartof><rights>2018 The Author(s)</rights><rights>2018 The Author(s).</rights><rights>2018 The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63</citedby><cites>FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63</cites><orcidid>0000-0002-5839-0393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127182/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6127182/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30111665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanin, Massimiliano</creatorcontrib><creatorcontrib>Tuñas, Juan Manuel</creatorcontrib><creatorcontrib>Menasalvas, Ernestina</creatorcontrib><title>Understanding diseases as increased heterogeneity: a complex network computational framework</title><title>Journal of the Royal Society interface</title><addtitle>J. R. Soc. Interface</addtitle><addtitle>J R Soc Interface</addtitle><description>Owing to the complexity of the human body, most diseases present a high interpersonal variability in the way they manifest, i.e. in their phenotype, which has important clinical repercussions—for instance, the difficulty in defining objective diagnostic rules. Here we explore the hypothesis that signs and symptoms used to define a disease should be understood in terms of the dispersion (as opposed to the average) of physical observables. To that end, we propose a computational framework, based on complex networks theory, to map groups of subjects to a network structure, based on their pairwise phenotypical similarity. We demonstrate that the resulting structure can be used to improve the performance of classification algorithms, especially in the case of a limited number of instances, with both synthetic and real datasets. Beyond providing an alternative conceptual understanding of diseases, the proposed framework could be of special relevance in the growing field of personalized, or N-to-1, medicine.</description><subject>Complex Networks</subject><subject>Data Analysis</subject><subject>Life Sciences–Mathematics interface</subject><subject>Personalized Medicine</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEoqVw5Yhy5LKLP2LH5oCEKgqVKiEBvSFZE3uydUnsxXYKy68nYcuKCsHJM-PH847nraqnlKwp0epFyr5fM0LVmjRE3KuOaduwlZCS3T_ESh9Vj3K-JoS3XIiH1REnlFIpxXH1-TI4TLlAcD5sauczQsZcQ659sGlJXH2FBVPcYEBfdi9rqG0ctwN-rwOWbzF9-ZVPBYqPAYa6TzDiUn9cPehhyPjk9jypLs_efDp9t7p4__b89PXFygoty0pLpfoWur7tLOusYrRRVkCrNO_aDgFawcFR6ZRuNLquZ70QjirXoAYJkp9Ur_Z9t1M3orMYSoLBbJMfIe1MBG_u3gR_ZTbxxkjKWqrY3OD5bYMUv06Yixl9tjgMEDBO2TCiNFONJHxG13vUpphzwv4gQ4lZLDGLJWaxxCyWzA-e_TncAf_twQxs9kCKu3lL0XosO3MdpzQvM5sPH8_PbqjwtBGGKE6JaPgc_vDbvRIVxuc8oVmAu9p_j8L_p_SPD_wEZdG_Qg</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Zanin, Massimiliano</creator><creator>Tuñas, Juan Manuel</creator><creator>Menasalvas, Ernestina</creator><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5839-0393</orcidid></search><sort><creationdate>20180801</creationdate><title>Understanding diseases as increased heterogeneity: a complex network computational framework</title><author>Zanin, Massimiliano ; Tuñas, Juan Manuel ; Menasalvas, Ernestina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complex Networks</topic><topic>Data Analysis</topic><topic>Life Sciences–Mathematics interface</topic><topic>Personalized Medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanin, Massimiliano</creatorcontrib><creatorcontrib>Tuñas, Juan Manuel</creatorcontrib><creatorcontrib>Menasalvas, Ernestina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanin, Massimiliano</au><au>Tuñas, Juan Manuel</au><au>Menasalvas, Ernestina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding diseases as increased heterogeneity: a complex network computational framework</atitle><jtitle>Journal of the Royal Society interface</jtitle><stitle>J. R. Soc. Interface</stitle><addtitle>J R Soc Interface</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>15</volume><issue>145</issue><spage>20180405</spage><pages>20180405-</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Owing to the complexity of the human body, most diseases present a high interpersonal variability in the way they manifest, i.e. in their phenotype, which has important clinical repercussions—for instance, the difficulty in defining objective diagnostic rules. Here we explore the hypothesis that signs and symptoms used to define a disease should be understood in terms of the dispersion (as opposed to the average) of physical observables. To that end, we propose a computational framework, based on complex networks theory, to map groups of subjects to a network structure, based on their pairwise phenotypical similarity. We demonstrate that the resulting structure can be used to improve the performance of classification algorithms, especially in the case of a limited number of instances, with both synthetic and real datasets. Beyond providing an alternative conceptual understanding of diseases, the proposed framework could be of special relevance in the growing field of personalized, or N-to-1, medicine.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>30111665</pmid><doi>10.1098/rsif.2018.0405</doi><orcidid>https://orcid.org/0000-0002-5839-0393</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5689 |
ispartof | Journal of the Royal Society interface, 2018-08, Vol.15 (145), p.20180405 |
issn | 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmed_primary_30111665 |
source | PubMed Central; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Complex Networks Data Analysis Life Sciences–Mathematics interface Personalized Medicine |
title | Understanding diseases as increased heterogeneity: a complex network computational framework |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20diseases%20as%20increased%20heterogeneity:%20a%20complex%20network%20computational%20framework&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Zanin,%20Massimiliano&rft.date=2018-08-01&rft.volume=15&rft.issue=145&rft.spage=20180405&rft.pages=20180405-&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2018.0405&rft_dat=%3Cproquest_pubme%3E2089284603%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c596t-9688f7abf7bc2bc82148c5a7893b7beaa753ad16d8949edbf2f55d18d4e9a6a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2089284603&rft_id=info:pmid/30111665&rfr_iscdi=true |