Loading…

Wavelength-tunable and highly stable perovskite-quantum-dots-doped lasers with liquid crystal lasing cavities

This study applies a low-cost solvothermal method to synthesize all-inorganic (lead-free cesium tin halide) perovskite quantum dots (AIPQDs) and to fabricate AIPQD-doped lasers with cholesteric liquid crystal (CLC) lasing cavities. The lasers present highly qualified lasing features of low threshold...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2018-09
Main Authors: Chen, Lin-Jer, Dai, Jia-Heng, Lin, Jia-De, Mo, Ting-Shan, Lin, Hong-Ping, Yeh, Hui-Chen, Chuang, Yu-Chou, Jiang, Shun An, Lee, Chia-Rong
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study applies a low-cost solvothermal method to synthesize all-inorganic (lead-free cesium tin halide) perovskite quantum dots (AIPQDs) and to fabricate AIPQD-doped lasers with cholesteric liquid crystal (CLC) lasing cavities. The lasers present highly qualified lasing features of low threshold (150 nJ/pulse) and narrow linewidth (0.20 nm) that are attributed to the conjunction of the suppression of photoluminescence (PL) loss caused by the quantum confinement of AIPQDs and the amplification of PL caused by the band-edge effect of the CLC-distributed feedback resonator. In addition, the lasers possess highly flexible lasing-wavelength tuning features and a long-term stability under storage at room temperature and under high humidity given the protective role of CLC. These advantages are difficult to confer to typical light-emitting perovskite devices. Given these merits, the AIPQD doped CLC laser device has considerable potential applications in optoelectronics and photonic devices, including lighting, displays, and lasers.
ISSN:1944-8252