Loading…

Nitrogen-doped Microporous Carbon Derived from Pyridine-ligand Based Metal-Organic Complexes as High Performance SO2 Adsorption Sorbents

Heteroatom-doped porous carbons are emerging as platforms for gas adsorption. Herein, N-doped microporous carbon (NPCs) materials have been synthesized by carbonization of two pyridine-ligand based Metal-Organic Complexes (MOCs) at high temperatures (800, 900, 1000 and 1100 °C). For the NPCs (termed...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2018-10
Main Authors: Wang, Ani, Fan, Ruiqing, Pi, Xinxin, Zhou, Yuze, Chen, Guangyu, Chen, Wei, Yang, Yulin
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title ACS applied materials & interfaces
container_volume
creator Wang, Ani
Fan, Ruiqing
Pi, Xinxin
Zhou, Yuze
Chen, Guangyu
Chen, Wei
Yang, Yulin
description Heteroatom-doped porous carbons are emerging as platforms for gas adsorption. Herein, N-doped microporous carbon (NPCs) materials have been synthesized by carbonization of two pyridine-ligand based Metal-Organic Complexes (MOCs) at high temperatures (800, 900, 1000 and 1100 °C). For the NPCs (termed NPC-1-T and NPC-2-T, T represents the carbonization temperature), micropore is dominant, pyridinic-N and other N atom of MOC precursors mostly retained, the N content reaches as high as 16.61 %. They all show high BET surface area and pore volume, in particular, NPC-1-900 exhibits the highest surface areas and pore volumes, up to 1656.2 m2 g-1 and 1.29 cm3 g-1, high content of pyridinic-N (7.3 %), bring out considerable amount of SO2 capture (118.1 mg g-1). Theoretical calculation (int=ultrafine m062x) indicates that pyridinic-N act as the leading active sites contributing to high SO2 adsorption and higher content of pyridinic-N doping into graphite carbon layer structure could change the electrostatic surface potential, as well as the local electronic density, which enhanced SO2 absorption on carbon edge positions. The results show great potential for preparation of microporous carbon materials from pyridine-ligand based Metal-Organic Complexes for effective SO2 adsorption.
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_30295027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30295027</sourcerecordid><originalsourceid>FETCH-pubmed_primary_302950273</originalsourceid><addsrcrecordid>eNqFjsFOwzAQRC0kREvhF9D-gCXjNNAeIYB6gVZq75UTb8JWsddap4j-AZ9NkODMaaSZN6M5U9Pb5XyuF7a0E3WZ88GYu8Ka8kJNCmOXpbH3U_X1RoNwh1F7TujhlRrhxMLHDJWTmiM8odDHGLXCATYnIU8RdU-dix4eXf5p4eB6vZbRogYqDqnHT8zgMqyoe4cNSssSXGwQtmsLDz6zpIHG9S1LjXHIV-q8dX3G61-dqZuX51210ulYB_T7JBScnPZ_14t_gW-Z8FC7</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nitrogen-doped Microporous Carbon Derived from Pyridine-ligand Based Metal-Organic Complexes as High Performance SO2 Adsorption Sorbents</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Ani ; Fan, Ruiqing ; Pi, Xinxin ; Zhou, Yuze ; Chen, Guangyu ; Chen, Wei ; Yang, Yulin</creator><creatorcontrib>Wang, Ani ; Fan, Ruiqing ; Pi, Xinxin ; Zhou, Yuze ; Chen, Guangyu ; Chen, Wei ; Yang, Yulin</creatorcontrib><description>Heteroatom-doped porous carbons are emerging as platforms for gas adsorption. Herein, N-doped microporous carbon (NPCs) materials have been synthesized by carbonization of two pyridine-ligand based Metal-Organic Complexes (MOCs) at high temperatures (800, 900, 1000 and 1100 °C). For the NPCs (termed NPC-1-T and NPC-2-T, T represents the carbonization temperature), micropore is dominant, pyridinic-N and other N atom of MOC precursors mostly retained, the N content reaches as high as 16.61 %. They all show high BET surface area and pore volume, in particular, NPC-1-900 exhibits the highest surface areas and pore volumes, up to 1656.2 m2 g-1 and 1.29 cm3 g-1, high content of pyridinic-N (7.3 %), bring out considerable amount of SO2 capture (118.1 mg g-1). Theoretical calculation (int=ultrafine m062x) indicates that pyridinic-N act as the leading active sites contributing to high SO2 adsorption and higher content of pyridinic-N doping into graphite carbon layer structure could change the electrostatic surface potential, as well as the local electronic density, which enhanced SO2 absorption on carbon edge positions. The results show great potential for preparation of microporous carbon materials from pyridine-ligand based Metal-Organic Complexes for effective SO2 adsorption.</description><identifier>EISSN: 1944-8252</identifier><identifier>PMID: 30295027</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30295027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ani</creatorcontrib><creatorcontrib>Fan, Ruiqing</creatorcontrib><creatorcontrib>Pi, Xinxin</creatorcontrib><creatorcontrib>Zhou, Yuze</creatorcontrib><creatorcontrib>Chen, Guangyu</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Yang, Yulin</creatorcontrib><title>Nitrogen-doped Microporous Carbon Derived from Pyridine-ligand Based Metal-Organic Complexes as High Performance SO2 Adsorption Sorbents</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Heteroatom-doped porous carbons are emerging as platforms for gas adsorption. Herein, N-doped microporous carbon (NPCs) materials have been synthesized by carbonization of two pyridine-ligand based Metal-Organic Complexes (MOCs) at high temperatures (800, 900, 1000 and 1100 °C). For the NPCs (termed NPC-1-T and NPC-2-T, T represents the carbonization temperature), micropore is dominant, pyridinic-N and other N atom of MOC precursors mostly retained, the N content reaches as high as 16.61 %. They all show high BET surface area and pore volume, in particular, NPC-1-900 exhibits the highest surface areas and pore volumes, up to 1656.2 m2 g-1 and 1.29 cm3 g-1, high content of pyridinic-N (7.3 %), bring out considerable amount of SO2 capture (118.1 mg g-1). Theoretical calculation (int=ultrafine m062x) indicates that pyridinic-N act as the leading active sites contributing to high SO2 adsorption and higher content of pyridinic-N doping into graphite carbon layer structure could change the electrostatic surface potential, as well as the local electronic density, which enhanced SO2 absorption on carbon edge positions. The results show great potential for preparation of microporous carbon materials from pyridine-ligand based Metal-Organic Complexes for effective SO2 adsorption.</description><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFjsFOwzAQRC0kREvhF9D-gCXjNNAeIYB6gVZq75UTb8JWsddap4j-AZ9NkODMaaSZN6M5U9Pb5XyuF7a0E3WZ88GYu8Ka8kJNCmOXpbH3U_X1RoNwh1F7TujhlRrhxMLHDJWTmiM8odDHGLXCATYnIU8RdU-dix4eXf5p4eB6vZbRogYqDqnHT8zgMqyoe4cNSssSXGwQtmsLDz6zpIHG9S1LjXHIV-q8dX3G61-dqZuX51210ulYB_T7JBScnPZ_14t_gW-Z8FC7</recordid><startdate>20181008</startdate><enddate>20181008</enddate><creator>Wang, Ani</creator><creator>Fan, Ruiqing</creator><creator>Pi, Xinxin</creator><creator>Zhou, Yuze</creator><creator>Chen, Guangyu</creator><creator>Chen, Wei</creator><creator>Yang, Yulin</creator><scope>NPM</scope></search><sort><creationdate>20181008</creationdate><title>Nitrogen-doped Microporous Carbon Derived from Pyridine-ligand Based Metal-Organic Complexes as High Performance SO2 Adsorption Sorbents</title><author>Wang, Ani ; Fan, Ruiqing ; Pi, Xinxin ; Zhou, Yuze ; Chen, Guangyu ; Chen, Wei ; Yang, Yulin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_302950273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ani</creatorcontrib><creatorcontrib>Fan, Ruiqing</creatorcontrib><creatorcontrib>Pi, Xinxin</creatorcontrib><creatorcontrib>Zhou, Yuze</creatorcontrib><creatorcontrib>Chen, Guangyu</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Yang, Yulin</creatorcontrib><collection>PubMed</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ani</au><au>Fan, Ruiqing</au><au>Pi, Xinxin</au><au>Zhou, Yuze</au><au>Chen, Guangyu</au><au>Chen, Wei</au><au>Yang, Yulin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-doped Microporous Carbon Derived from Pyridine-ligand Based Metal-Organic Complexes as High Performance SO2 Adsorption Sorbents</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2018-10-08</date><risdate>2018</risdate><eissn>1944-8252</eissn><abstract>Heteroatom-doped porous carbons are emerging as platforms for gas adsorption. Herein, N-doped microporous carbon (NPCs) materials have been synthesized by carbonization of two pyridine-ligand based Metal-Organic Complexes (MOCs) at high temperatures (800, 900, 1000 and 1100 °C). For the NPCs (termed NPC-1-T and NPC-2-T, T represents the carbonization temperature), micropore is dominant, pyridinic-N and other N atom of MOC precursors mostly retained, the N content reaches as high as 16.61 %. They all show high BET surface area and pore volume, in particular, NPC-1-900 exhibits the highest surface areas and pore volumes, up to 1656.2 m2 g-1 and 1.29 cm3 g-1, high content of pyridinic-N (7.3 %), bring out considerable amount of SO2 capture (118.1 mg g-1). Theoretical calculation (int=ultrafine m062x) indicates that pyridinic-N act as the leading active sites contributing to high SO2 adsorption and higher content of pyridinic-N doping into graphite carbon layer structure could change the electrostatic surface potential, as well as the local electronic density, which enhanced SO2 absorption on carbon edge positions. The results show great potential for preparation of microporous carbon materials from pyridine-ligand based Metal-Organic Complexes for effective SO2 adsorption.</abstract><cop>United States</cop><pmid>30295027</pmid></addata></record>
fulltext fulltext
identifier EISSN: 1944-8252
ispartof ACS applied materials & interfaces, 2018-10
issn 1944-8252
language eng
recordid cdi_pubmed_primary_30295027
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Nitrogen-doped Microporous Carbon Derived from Pyridine-ligand Based Metal-Organic Complexes as High Performance SO2 Adsorption Sorbents
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-doped%20Microporous%20Carbon%20Derived%20from%20Pyridine-ligand%20Based%20Metal-Organic%20Complexes%20as%20High%20Performance%20SO2%20Adsorption%20Sorbents&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Ani&rft.date=2018-10-08&rft.eissn=1944-8252&rft_id=info:doi/&rft_dat=%3Cpubmed%3E30295027%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_302950273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30295027&rfr_iscdi=true