Loading…

Spin-orbit coupling as a probe to decipher halogen bonding

The nature of halogen-bond interactions is scrutinized from the perspective of astatine, the heaviest halogen element. Potentially the strongest halogen-bond donor, its ability is shown to be deeply affected by relativistic effects and especially by the spin-orbit coupling. Complexes between a serie...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2018-12, Vol.2 (47), p.29616-29624
Main Authors: Graton, Jérôme, Rahali, Seyfeddine, Le Questel, Jean-Yves, Montavon, Gilles, Pilmé, Julien, Galland, Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-ba57f10c6c86465feaf785fa6d563220edb8a93aa2fd85ac3e64241bdaf7a1dc3
cites cdi_FETCH-LOGICAL-c444t-ba57f10c6c86465feaf785fa6d563220edb8a93aa2fd85ac3e64241bdaf7a1dc3
container_end_page 29624
container_issue 47
container_start_page 29616
container_title Physical chemistry chemical physics : PCCP
container_volume 2
creator Graton, Jérôme
Rahali, Seyfeddine
Le Questel, Jean-Yves
Montavon, Gilles
Pilmé, Julien
Galland, Nicolas
description The nature of halogen-bond interactions is scrutinized from the perspective of astatine, the heaviest halogen element. Potentially the strongest halogen-bond donor, its ability is shown to be deeply affected by relativistic effects and especially by the spin-orbit coupling. Complexes between a series of XY dihalogens (X, Y = At, I, Br, Cl and F) and ammonia are studied with two-component relativistic quantum calculations, revealing that the spin-orbit interaction leads to a weaker halogen-bond donating ability of the diastatine species with respect to diiodine. In addition, the donating ability of the lighter halogen elements, iodine and bromine, in the AtI and AtBr species is more decreased by the spin-orbit coupling than that of astatine. This can only be rationalized from the evolution of a charge-transfer descriptor, the local electrophilicity ω + S,max , determined for the pre-reactive XY species. Finally, the investigation of the spin-orbit coupling effects by means of quantum chemical topology methods allows us to unveil the connection between the astatine propensity to form charge-shift bonds and the astatine ability to engage in halogen bonds. The connection between the astatine propensity to form charge-shift bonds and halogen bonds unveiled by the spin-orbit coupling.
doi_str_mv 10.1039/c8cp05690k
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30318527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2149923770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-ba57f10c6c86465feaf785fa6d563220edb8a93aa2fd85ac3e64241bdaf7a1dc3</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4EWF6svPpt7GUCcOFNRzSdN06-yamqyC_72ZmxM8JSQfXt77BqFjDFcYaHqtpW6BixTed1AfM0HjFCTb3e4T0UMH3s8BAHNM91GPAsWSk6SPbl7aqomty6tlpG3X1lUzjZSPVNQ6m5toaaPC6KqdGRfNVG2npoly2xSBHaK9UtXeHG3WAXq7u30djePJ0_3DaDiJNWNsGeeKJyUGLbQUTPDSqDKRvFSi4IISAqbIpUqpUqQsJFeaGsEIw3kRnMKFpgN0sa4b3s9aVy2U-8qsqrLxcJKtzoAAMCr5Jw72fG1D9x-d8ctsUXlt6lo1xnY-I5gETRNY0bN_dG4714RJgmJpSmiSQFCXa6Wd9d6ZctsBhmyVfjaSo-ef9B8DPt2U7PKFKbb0N-4ATtbAeb29_fs--g1SFIck</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2149923770</pqid></control><display><type>article</type><title>Spin-orbit coupling as a probe to decipher halogen bonding</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Graton, Jérôme ; Rahali, Seyfeddine ; Le Questel, Jean-Yves ; Montavon, Gilles ; Pilmé, Julien ; Galland, Nicolas</creator><creatorcontrib>Graton, Jérôme ; Rahali, Seyfeddine ; Le Questel, Jean-Yves ; Montavon, Gilles ; Pilmé, Julien ; Galland, Nicolas</creatorcontrib><description>The nature of halogen-bond interactions is scrutinized from the perspective of astatine, the heaviest halogen element. Potentially the strongest halogen-bond donor, its ability is shown to be deeply affected by relativistic effects and especially by the spin-orbit coupling. Complexes between a series of XY dihalogens (X, Y = At, I, Br, Cl and F) and ammonia are studied with two-component relativistic quantum calculations, revealing that the spin-orbit interaction leads to a weaker halogen-bond donating ability of the diastatine species with respect to diiodine. In addition, the donating ability of the lighter halogen elements, iodine and bromine, in the AtI and AtBr species is more decreased by the spin-orbit coupling than that of astatine. This can only be rationalized from the evolution of a charge-transfer descriptor, the local electrophilicity ω + S,max , determined for the pre-reactive XY species. Finally, the investigation of the spin-orbit coupling effects by means of quantum chemical topology methods allows us to unveil the connection between the astatine propensity to form charge-shift bonds and the astatine ability to engage in halogen bonds. The connection between the astatine propensity to form charge-shift bonds and halogen bonds unveiled by the spin-orbit coupling.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c8cp05690k</identifier><identifier>PMID: 30318527</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Ammonia ; Astatine ; Atomic Physics ; Bromine ; Charge transfer ; Chemical Physics ; Iodine ; Mathematical analysis ; Organic chemistry ; Physics ; Quantum chemistry ; Relativism ; Relativistic effects ; Spin-orbit interactions</subject><ispartof>Physical chemistry chemical physics : PCCP, 2018-12, Vol.2 (47), p.29616-29624</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-ba57f10c6c86465feaf785fa6d563220edb8a93aa2fd85ac3e64241bdaf7a1dc3</citedby><cites>FETCH-LOGICAL-c444t-ba57f10c6c86465feaf785fa6d563220edb8a93aa2fd85ac3e64241bdaf7a1dc3</cites><orcidid>0000-0002-1114-200X ; 0000-0001-5618-226X ; 0000-0001-5307-2137 ; 0000-0002-3049-0106 ; 0000-0003-0421-4930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30318527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02004385$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Graton, Jérôme</creatorcontrib><creatorcontrib>Rahali, Seyfeddine</creatorcontrib><creatorcontrib>Le Questel, Jean-Yves</creatorcontrib><creatorcontrib>Montavon, Gilles</creatorcontrib><creatorcontrib>Pilmé, Julien</creatorcontrib><creatorcontrib>Galland, Nicolas</creatorcontrib><title>Spin-orbit coupling as a probe to decipher halogen bonding</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The nature of halogen-bond interactions is scrutinized from the perspective of astatine, the heaviest halogen element. Potentially the strongest halogen-bond donor, its ability is shown to be deeply affected by relativistic effects and especially by the spin-orbit coupling. Complexes between a series of XY dihalogens (X, Y = At, I, Br, Cl and F) and ammonia are studied with two-component relativistic quantum calculations, revealing that the spin-orbit interaction leads to a weaker halogen-bond donating ability of the diastatine species with respect to diiodine. In addition, the donating ability of the lighter halogen elements, iodine and bromine, in the AtI and AtBr species is more decreased by the spin-orbit coupling than that of astatine. This can only be rationalized from the evolution of a charge-transfer descriptor, the local electrophilicity ω + S,max , determined for the pre-reactive XY species. Finally, the investigation of the spin-orbit coupling effects by means of quantum chemical topology methods allows us to unveil the connection between the astatine propensity to form charge-shift bonds and the astatine ability to engage in halogen bonds. The connection between the astatine propensity to form charge-shift bonds and halogen bonds unveiled by the spin-orbit coupling.</description><subject>Ammonia</subject><subject>Astatine</subject><subject>Atomic Physics</subject><subject>Bromine</subject><subject>Charge transfer</subject><subject>Chemical Physics</subject><subject>Iodine</subject><subject>Mathematical analysis</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Quantum chemistry</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Spin-orbit interactions</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3el4EWF6svPpt7GUCcOFNRzSdN06-yamqyC_72ZmxM8JSQfXt77BqFjDFcYaHqtpW6BixTed1AfM0HjFCTb3e4T0UMH3s8BAHNM91GPAsWSk6SPbl7aqomty6tlpG3X1lUzjZSPVNQ6m5toaaPC6KqdGRfNVG2npoly2xSBHaK9UtXeHG3WAXq7u30djePJ0_3DaDiJNWNsGeeKJyUGLbQUTPDSqDKRvFSi4IISAqbIpUqpUqQsJFeaGsEIw3kRnMKFpgN0sa4b3s9aVy2U-8qsqrLxcJKtzoAAMCr5Jw72fG1D9x-d8ctsUXlt6lo1xnY-I5gETRNY0bN_dG4714RJgmJpSmiSQFCXa6Wd9d6ZctsBhmyVfjaSo-ef9B8DPt2U7PKFKbb0N-4ATtbAeb29_fs--g1SFIck</recordid><startdate>20181205</startdate><enddate>20181205</enddate><creator>Graton, Jérôme</creator><creator>Rahali, Seyfeddine</creator><creator>Le Questel, Jean-Yves</creator><creator>Montavon, Gilles</creator><creator>Pilmé, Julien</creator><creator>Galland, Nicolas</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1114-200X</orcidid><orcidid>https://orcid.org/0000-0001-5618-226X</orcidid><orcidid>https://orcid.org/0000-0001-5307-2137</orcidid><orcidid>https://orcid.org/0000-0002-3049-0106</orcidid><orcidid>https://orcid.org/0000-0003-0421-4930</orcidid></search><sort><creationdate>20181205</creationdate><title>Spin-orbit coupling as a probe to decipher halogen bonding</title><author>Graton, Jérôme ; Rahali, Seyfeddine ; Le Questel, Jean-Yves ; Montavon, Gilles ; Pilmé, Julien ; Galland, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-ba57f10c6c86465feaf785fa6d563220edb8a93aa2fd85ac3e64241bdaf7a1dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ammonia</topic><topic>Astatine</topic><topic>Atomic Physics</topic><topic>Bromine</topic><topic>Charge transfer</topic><topic>Chemical Physics</topic><topic>Iodine</topic><topic>Mathematical analysis</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Quantum chemistry</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graton, Jérôme</creatorcontrib><creatorcontrib>Rahali, Seyfeddine</creatorcontrib><creatorcontrib>Le Questel, Jean-Yves</creatorcontrib><creatorcontrib>Montavon, Gilles</creatorcontrib><creatorcontrib>Pilmé, Julien</creatorcontrib><creatorcontrib>Galland, Nicolas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graton, Jérôme</au><au>Rahali, Seyfeddine</au><au>Le Questel, Jean-Yves</au><au>Montavon, Gilles</au><au>Pilmé, Julien</au><au>Galland, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin-orbit coupling as a probe to decipher halogen bonding</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2018-12-05</date><risdate>2018</risdate><volume>2</volume><issue>47</issue><spage>29616</spage><epage>29624</epage><pages>29616-29624</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The nature of halogen-bond interactions is scrutinized from the perspective of astatine, the heaviest halogen element. Potentially the strongest halogen-bond donor, its ability is shown to be deeply affected by relativistic effects and especially by the spin-orbit coupling. Complexes between a series of XY dihalogens (X, Y = At, I, Br, Cl and F) and ammonia are studied with two-component relativistic quantum calculations, revealing that the spin-orbit interaction leads to a weaker halogen-bond donating ability of the diastatine species with respect to diiodine. In addition, the donating ability of the lighter halogen elements, iodine and bromine, in the AtI and AtBr species is more decreased by the spin-orbit coupling than that of astatine. This can only be rationalized from the evolution of a charge-transfer descriptor, the local electrophilicity ω + S,max , determined for the pre-reactive XY species. Finally, the investigation of the spin-orbit coupling effects by means of quantum chemical topology methods allows us to unveil the connection between the astatine propensity to form charge-shift bonds and the astatine ability to engage in halogen bonds. The connection between the astatine propensity to form charge-shift bonds and halogen bonds unveiled by the spin-orbit coupling.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30318527</pmid><doi>10.1039/c8cp05690k</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1114-200X</orcidid><orcidid>https://orcid.org/0000-0001-5618-226X</orcidid><orcidid>https://orcid.org/0000-0001-5307-2137</orcidid><orcidid>https://orcid.org/0000-0002-3049-0106</orcidid><orcidid>https://orcid.org/0000-0003-0421-4930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2018-12, Vol.2 (47), p.29616-29624
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_30318527
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Ammonia
Astatine
Atomic Physics
Bromine
Charge transfer
Chemical Physics
Iodine
Mathematical analysis
Organic chemistry
Physics
Quantum chemistry
Relativism
Relativistic effects
Spin-orbit interactions
title Spin-orbit coupling as a probe to decipher halogen bonding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin-orbit%20coupling%20as%20a%20probe%20to%20decipher%20halogen%20bonding&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Graton,%20J%C3%A9r%C3%B4me&rft.date=2018-12-05&rft.volume=2&rft.issue=47&rft.spage=29616&rft.epage=29624&rft.pages=29616-29624&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c8cp05690k&rft_dat=%3Cproquest_pubme%3E2149923770%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-ba57f10c6c86465feaf785fa6d563220edb8a93aa2fd85ac3e64241bdaf7a1dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2149923770&rft_id=info:pmid/30318527&rfr_iscdi=true