Loading…

Dewetting of monolayer water and isopropanol between MoS 2 nanosheets

Understanding dewetting of solvent molecules confined to layered material (LM) interfaces is crucial to the synthesis of two-dimensional materials by liquid-phase exfoliation. Here, we examine dewetting behavior of water and isopropanol/water (IPA/H O) mixtures between molybdenum disulfide (MoS ) me...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2018-11, Vol.8 (1), p.16704
Main Authors: Wang, Beibei, Kalia, Rajiv K, Nakano, Aiichiro, Vashishta, Priya D
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 16704
container_title Scientific reports
container_volume 8
creator Wang, Beibei
Kalia, Rajiv K
Nakano, Aiichiro
Vashishta, Priya D
description Understanding dewetting of solvent molecules confined to layered material (LM) interfaces is crucial to the synthesis of two-dimensional materials by liquid-phase exfoliation. Here, we examine dewetting behavior of water and isopropanol/water (IPA/H O) mixtures between molybdenum disulfide (MoS ) membranes using molecular dynamics (MD) simulations. We find that a monolayer of water spontaneously ruptures into nanodroplets surrounded by dry regions. The average speed of receding dry patches is close to the speed of sound in air. In contrast, monolayer mixtures of IPA/H O between MoS membranes slowly transform into percolating networks of nanoislands and nanochannels in which water molecules diffuse inside and IPA molecules stay at the periphery of islands and channels. These contrasting behaviors may explain why IPA/H O mixtures are much more effective than H O alone in weakening interlayer coupling and exfoliating MoS into atomically thin sheets.
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_30420653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30420653</sourcerecordid><originalsourceid>FETCH-pubmed_primary_304206533</originalsourceid><addsrcrecordid>eNqFjUEKwjAURIMgtmivIP8ChfiTCl1rxY0r3ZeU_tZKm4QkUnp7s9C1s5iBNwOzYilyWeQoEBOWef_iUQWW8lBuWCK4RH4sRMqqM80UwqB7MB1MRptRLeRgViG60i0M3lhnrIoNNBRmIg03cwcEHZl_EgW_Y-tOjZ6yb27Z_lI9TtfcvpuJ2tq6YVJuqX-_4u_gA2vbONQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dewetting of monolayer water and isopropanol between MoS 2 nanosheets</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Beibei ; Kalia, Rajiv K ; Nakano, Aiichiro ; Vashishta, Priya D</creator><creatorcontrib>Wang, Beibei ; Kalia, Rajiv K ; Nakano, Aiichiro ; Vashishta, Priya D</creatorcontrib><description>Understanding dewetting of solvent molecules confined to layered material (LM) interfaces is crucial to the synthesis of two-dimensional materials by liquid-phase exfoliation. Here, we examine dewetting behavior of water and isopropanol/water (IPA/H O) mixtures between molybdenum disulfide (MoS ) membranes using molecular dynamics (MD) simulations. We find that a monolayer of water spontaneously ruptures into nanodroplets surrounded by dry regions. The average speed of receding dry patches is close to the speed of sound in air. In contrast, monolayer mixtures of IPA/H O between MoS membranes slowly transform into percolating networks of nanoislands and nanochannels in which water molecules diffuse inside and IPA molecules stay at the periphery of islands and channels. These contrasting behaviors may explain why IPA/H O mixtures are much more effective than H O alone in weakening interlayer coupling and exfoliating MoS into atomically thin sheets.</description><identifier>EISSN: 2045-2322</identifier><identifier>PMID: 30420653</identifier><language>eng</language><publisher>England</publisher><ispartof>Scientific reports, 2018-11, Vol.8 (1), p.16704</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9581-2698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30420653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Beibei</creatorcontrib><creatorcontrib>Kalia, Rajiv K</creatorcontrib><creatorcontrib>Nakano, Aiichiro</creatorcontrib><creatorcontrib>Vashishta, Priya D</creatorcontrib><title>Dewetting of monolayer water and isopropanol between MoS 2 nanosheets</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Understanding dewetting of solvent molecules confined to layered material (LM) interfaces is crucial to the synthesis of two-dimensional materials by liquid-phase exfoliation. Here, we examine dewetting behavior of water and isopropanol/water (IPA/H O) mixtures between molybdenum disulfide (MoS ) membranes using molecular dynamics (MD) simulations. We find that a monolayer of water spontaneously ruptures into nanodroplets surrounded by dry regions. The average speed of receding dry patches is close to the speed of sound in air. In contrast, monolayer mixtures of IPA/H O between MoS membranes slowly transform into percolating networks of nanoislands and nanochannels in which water molecules diffuse inside and IPA molecules stay at the periphery of islands and channels. These contrasting behaviors may explain why IPA/H O mixtures are much more effective than H O alone in weakening interlayer coupling and exfoliating MoS into atomically thin sheets.</description><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFjUEKwjAURIMgtmivIP8ChfiTCl1rxY0r3ZeU_tZKm4QkUnp7s9C1s5iBNwOzYilyWeQoEBOWef_iUQWW8lBuWCK4RH4sRMqqM80UwqB7MB1MRptRLeRgViG60i0M3lhnrIoNNBRmIg03cwcEHZl_EgW_Y-tOjZ6yb27Z_lI9TtfcvpuJ2tq6YVJuqX-_4u_gA2vbONQ</recordid><startdate>20181112</startdate><enddate>20181112</enddate><creator>Wang, Beibei</creator><creator>Kalia, Rajiv K</creator><creator>Nakano, Aiichiro</creator><creator>Vashishta, Priya D</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-9581-2698</orcidid></search><sort><creationdate>20181112</creationdate><title>Dewetting of monolayer water and isopropanol between MoS 2 nanosheets</title><author>Wang, Beibei ; Kalia, Rajiv K ; Nakano, Aiichiro ; Vashishta, Priya D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_304206533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Beibei</creatorcontrib><creatorcontrib>Kalia, Rajiv K</creatorcontrib><creatorcontrib>Nakano, Aiichiro</creatorcontrib><creatorcontrib>Vashishta, Priya D</creatorcontrib><collection>PubMed</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Beibei</au><au>Kalia, Rajiv K</au><au>Nakano, Aiichiro</au><au>Vashishta, Priya D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dewetting of monolayer water and isopropanol between MoS 2 nanosheets</atitle><jtitle>Scientific reports</jtitle><addtitle>Sci Rep</addtitle><date>2018-11-12</date><risdate>2018</risdate><volume>8</volume><issue>1</issue><spage>16704</spage><pages>16704-</pages><eissn>2045-2322</eissn><abstract>Understanding dewetting of solvent molecules confined to layered material (LM) interfaces is crucial to the synthesis of two-dimensional materials by liquid-phase exfoliation. Here, we examine dewetting behavior of water and isopropanol/water (IPA/H O) mixtures between molybdenum disulfide (MoS ) membranes using molecular dynamics (MD) simulations. We find that a monolayer of water spontaneously ruptures into nanodroplets surrounded by dry regions. The average speed of receding dry patches is close to the speed of sound in air. In contrast, monolayer mixtures of IPA/H O between MoS membranes slowly transform into percolating networks of nanoislands and nanochannels in which water molecules diffuse inside and IPA molecules stay at the periphery of islands and channels. These contrasting behaviors may explain why IPA/H O mixtures are much more effective than H O alone in weakening interlayer coupling and exfoliating MoS into atomically thin sheets.</abstract><cop>England</cop><pmid>30420653</pmid><orcidid>https://orcid.org/0000-0002-9581-2698</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2045-2322
ispartof Scientific reports, 2018-11, Vol.8 (1), p.16704
issn 2045-2322
language eng
recordid cdi_pubmed_primary_30420653
source PubMed Central (Open Access); Publicly Available Content Database; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
title Dewetting of monolayer water and isopropanol between MoS 2 nanosheets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A42%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dewetting%20of%20monolayer%20water%20and%20isopropanol%20between%20MoS%202%20nanosheets&rft.jtitle=Scientific%20reports&rft.au=Wang,%20Beibei&rft.date=2018-11-12&rft.volume=8&rft.issue=1&rft.spage=16704&rft.pages=16704-&rft.eissn=2045-2322&rft_id=info:doi/&rft_dat=%3Cpubmed%3E30420653%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_304206533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30420653&rfr_iscdi=true