Loading…
Antioxidant activity and Neurite outgrowth-enhancing activity of scorbamic acid and a red pigment derived from ascorbic acid
L-Ascorbic acid (AA), known as vitamin C, can form browning products by a non-enzymatic process during storage and the browning products cause deterioration of agricultural products. In the browning reaction, a red pigment, 2,2´-nitrilodi-2(2´)-deoxy-L-ascorbic acid ammonium salt (NDA), is generated...
Saved in:
Published in: | Natural product research 2020-03, Vol.34 (6), p.838-842 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | L-Ascorbic acid (AA), known as vitamin C, can form browning products by a non-enzymatic process during storage and the browning products cause deterioration of agricultural products. In the browning reaction, a red pigment, 2,2´-nitrilodi-2(2´)-deoxy-L-ascorbic acid ammonium salt (NDA), is generated from AA via L-scorbamic acid (SCA) as an intermediate. However, the biological activities of SCA and NDA have not yet been clarified. In this study, we assayed the antioxidant activities of SCA and NDA using ABTS radical cation and their neurite outgrowth-enhancing activities in PC12 cells. SCA showed stronger radical-scavenging activity than that of AA, while NDA hardly showed any activity. SCA and NDA enhanced the neurite outgrowth induced by dibutyryl cyclic AMP after their incorporation into cells in the same manner as that of AA. The results indicated that SCA has antioxidant activity and that SCA and NDA have neurite outgrowth-enhancing activity. |
---|---|
ISSN: | 1478-6419 1478-6427 |
DOI: | 10.1080/14786419.2018.1499641 |