Loading…

Exposure to airborne nano-titanium dioxide during airless spray painting and sanding

The objectives of the study were to measure and characterize exposure to airborne nanoscale titanium dioxide during airless spraying and sanding of a nano-enabled paint, and to evaluate the effectiveness of dust capture methods in reducing airborne nanoparticle concentrations. A tradesperson perform...

Full description

Saved in:
Bibliographic Details
Published in:Journal of occupational and environmental hygiene 2019-03, Vol.16 (3), p.218-228
Main Authors: West, Gavin H., Cooper, Michael R., Burrelli, Leonard G., Dresser, Daniel, Lippy, Bruce E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objectives of the study were to measure and characterize exposure to airborne nanoscale titanium dioxide during airless spraying and sanding of a nano-enabled paint, and to evaluate the effectiveness of dust capture methods in reducing airborne nanoparticle concentrations. A tradesperson performed the work activities in an environmentally controlled chamber. Samples were collected in the tradesperson's breathing zone and in surrounding areas to assess bystander exposure. Filter-based samples were analyzed using gravimetric methods, scanning electron microscopy, and energy dispersive spectroscopy. Differential particle count data were obtained by means of a scanning mobility particle sizer. Local exhaust ventilation provided statistically significant reductions of airborne nanoparticle concentrations during sanding. Sanding the paint after drying with a handheld power sander generated relatively low levels of airborne titanium dioxide. In contrast, task-based exposure measurements collected during the initial airless spray application of the nano-enabled paint suggested a potential for occupational exposures to exceed the time-weighted average exposure limit for ultrafine titanium dioxide recommended by the National Institute for Occupational Safety and Health. Painters applying nano-enabled coatings may have little recourse but to rely, in some instances, on lower tiers of the hierarchy of controls, such as personal protective equipment. In light of these findings, employers and industrial hygienists should characterize exposures and implement the hierarchy of controls to ensure painters are sufficiently protected.
ISSN:1545-9624
1545-9632
DOI:10.1080/15459624.2018.1550295