Loading…
High-rank separable atom-atom interaction potential used for solving two-body Lippmann-Schwinger and three-body Faddeev equations
We derive a high-rank separable potential formula of the atom-atom interaction by using the two-body wave function in the coordinate space as inputs. This high-rank separable potential can be utilized to numerically solve the two-body Lippmann-Schwinger equation and three-body Faddeev equation. By a...
Saved in:
Published in: | The Journal of chemical physics 2018-11, Vol.149 (20), p.204109-204109 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-7bebdcdbe037f5742680d1f7e6e4c6d9a7e7a1c261479bda9fd0802fbf55fff53 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-7bebdcdbe037f5742680d1f7e6e4c6d9a7e7a1c261479bda9fd0802fbf55fff53 |
container_end_page | 204109 |
container_issue | 20 |
container_start_page | 204109 |
container_title | The Journal of chemical physics |
container_volume | 149 |
creator | Li, Jing-Lun Cong, Shu-Lin |
description | We derive a high-rank separable potential formula of the atom-atom interaction by using the two-body wave function in the coordinate space as inputs. This high-rank separable potential can be utilized to numerically solve the two-body Lippmann-Schwinger equation and three-body Faddeev equation. By analyzing the convenience and stability of numerical calculations for different kinds of the matrix forms of the Lippmann-Schwinger and Faddeev equations, we can find the optimal forms of the kernal matrices in the two- and three-body scattering equations. We calculate the dimer bound energy, two-body scattering phase shift and off-shell t-matrix, the trimer bound energy, atom-dimer scattering length, and three-body recombination rate using the high-rank separable potentials, taking the identical 4He atoms as an application example. All the calculations converge quickly for the rank number N⩾3. The high-rank separable potential is valid for two-body scattering calculation of 4He atoms, but not accurate enough for reproducing the three-body scattering results by using only two-body s-wave interaction and describing the contributions of two-body high partial-waves to the three-body scattering for the 4He3 system. |
doi_str_mv | 10.1063/1.5045084 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_30501240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139302859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-7bebdcdbe037f5742680d1f7e6e4c6d9a7e7a1c261479bda9fd0802fbf55fff53</originalsourceid><addsrcrecordid>eNp90cFu1DAQBmALgehSOPACyBIXqOQydpw4PqKKtkgrcQDOkWOPuymJndpOqx55c7LswoEDF8_Bn36N5ifkNYdzDk31gZ_XIGto5ROy4dBqphoNT8kGQHCmG2hOyIucbwGAKyGfk5MKauBCwob8vB5udiyZ8INmnE0y_YjUlDix_UOHUDAZW4YY6BwLhjKYkS4ZHfUx0RzH-yHc0PIQWR_dI90O8zyZENhXu3tYfzBRExwtu4R4EJfGOcR7ineL2cfml-SZN2PGV8d5Sr5ffvp2cc22X64-X3zcMlvJtjDVY--s6xEq5WslRdOC415hg9I2ThuFynArGi6V7p3R3kELwve-rr33dXVK3h1y5xTvFsylm4ZscRxNwLjkTnCpoRJa6ZW-_YfexiWFdbtVVboC0dZ79f6gbIo5J_TdnIbJpMeOQ7fvpePdsZfVvjkmLv2E7q_8U8QKzg4g26H8Psx_0n4BWa-XKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2139302859</pqid></control><display><type>article</type><title>High-rank separable atom-atom interaction potential used for solving two-body Lippmann-Schwinger and three-body Faddeev equations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Li, Jing-Lun ; Cong, Shu-Lin</creator><creatorcontrib>Li, Jing-Lun ; Cong, Shu-Lin</creatorcontrib><description>We derive a high-rank separable potential formula of the atom-atom interaction by using the two-body wave function in the coordinate space as inputs. This high-rank separable potential can be utilized to numerically solve the two-body Lippmann-Schwinger equation and three-body Faddeev equation. By analyzing the convenience and stability of numerical calculations for different kinds of the matrix forms of the Lippmann-Schwinger and Faddeev equations, we can find the optimal forms of the kernal matrices in the two- and three-body scattering equations. We calculate the dimer bound energy, two-body scattering phase shift and off-shell t-matrix, the trimer bound energy, atom-dimer scattering length, and three-body recombination rate using the high-rank separable potentials, taking the identical 4He atoms as an application example. All the calculations converge quickly for the rank number N⩾3. The high-rank separable potential is valid for two-body scattering calculation of 4He atoms, but not accurate enough for reproducing the three-body scattering results by using only two-body s-wave interaction and describing the contributions of two-body high partial-waves to the three-body scattering for the 4He3 system.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5045084</identifier><identifier>PMID: 30501240</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Dimers ; Faddeev equations ; Mathematical analysis ; Physics ; Scattering ; Stability analysis ; Trimers ; Wave interaction</subject><ispartof>The Journal of chemical physics, 2018-11, Vol.149 (20), p.204109-204109</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-7bebdcdbe037f5742680d1f7e6e4c6d9a7e7a1c261479bda9fd0802fbf55fff53</citedby><cites>FETCH-LOGICAL-c348t-7bebdcdbe037f5742680d1f7e6e4c6d9a7e7a1c261479bda9fd0802fbf55fff53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5045084$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30501240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jing-Lun</creatorcontrib><creatorcontrib>Cong, Shu-Lin</creatorcontrib><title>High-rank separable atom-atom interaction potential used for solving two-body Lippmann-Schwinger and three-body Faddeev equations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We derive a high-rank separable potential formula of the atom-atom interaction by using the two-body wave function in the coordinate space as inputs. This high-rank separable potential can be utilized to numerically solve the two-body Lippmann-Schwinger equation and three-body Faddeev equation. By analyzing the convenience and stability of numerical calculations for different kinds of the matrix forms of the Lippmann-Schwinger and Faddeev equations, we can find the optimal forms of the kernal matrices in the two- and three-body scattering equations. We calculate the dimer bound energy, two-body scattering phase shift and off-shell t-matrix, the trimer bound energy, atom-dimer scattering length, and three-body recombination rate using the high-rank separable potentials, taking the identical 4He atoms as an application example. All the calculations converge quickly for the rank number N⩾3. The high-rank separable potential is valid for two-body scattering calculation of 4He atoms, but not accurate enough for reproducing the three-body scattering results by using only two-body s-wave interaction and describing the contributions of two-body high partial-waves to the three-body scattering for the 4He3 system.</description><subject>Dimers</subject><subject>Faddeev equations</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Scattering</subject><subject>Stability analysis</subject><subject>Trimers</subject><subject>Wave interaction</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90cFu1DAQBmALgehSOPACyBIXqOQydpw4PqKKtkgrcQDOkWOPuymJndpOqx55c7LswoEDF8_Bn36N5ifkNYdzDk31gZ_XIGto5ROy4dBqphoNT8kGQHCmG2hOyIucbwGAKyGfk5MKauBCwob8vB5udiyZ8INmnE0y_YjUlDix_UOHUDAZW4YY6BwLhjKYkS4ZHfUx0RzH-yHc0PIQWR_dI90O8zyZENhXu3tYfzBRExwtu4R4EJfGOcR7ineL2cfml-SZN2PGV8d5Sr5ffvp2cc22X64-X3zcMlvJtjDVY--s6xEq5WslRdOC415hg9I2ThuFynArGi6V7p3R3kELwve-rr33dXVK3h1y5xTvFsylm4ZscRxNwLjkTnCpoRJa6ZW-_YfexiWFdbtVVboC0dZ79f6gbIo5J_TdnIbJpMeOQ7fvpePdsZfVvjkmLv2E7q_8U8QKzg4g26H8Psx_0n4BWa-XKg</recordid><startdate>20181128</startdate><enddate>20181128</enddate><creator>Li, Jing-Lun</creator><creator>Cong, Shu-Lin</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20181128</creationdate><title>High-rank separable atom-atom interaction potential used for solving two-body Lippmann-Schwinger and three-body Faddeev equations</title><author>Li, Jing-Lun ; Cong, Shu-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-7bebdcdbe037f5742680d1f7e6e4c6d9a7e7a1c261479bda9fd0802fbf55fff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dimers</topic><topic>Faddeev equations</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Scattering</topic><topic>Stability analysis</topic><topic>Trimers</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jing-Lun</creatorcontrib><creatorcontrib>Cong, Shu-Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jing-Lun</au><au>Cong, Shu-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-rank separable atom-atom interaction potential used for solving two-body Lippmann-Schwinger and three-body Faddeev equations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2018-11-28</date><risdate>2018</risdate><volume>149</volume><issue>20</issue><spage>204109</spage><epage>204109</epage><pages>204109-204109</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We derive a high-rank separable potential formula of the atom-atom interaction by using the two-body wave function in the coordinate space as inputs. This high-rank separable potential can be utilized to numerically solve the two-body Lippmann-Schwinger equation and three-body Faddeev equation. By analyzing the convenience and stability of numerical calculations for different kinds of the matrix forms of the Lippmann-Schwinger and Faddeev equations, we can find the optimal forms of the kernal matrices in the two- and three-body scattering equations. We calculate the dimer bound energy, two-body scattering phase shift and off-shell t-matrix, the trimer bound energy, atom-dimer scattering length, and three-body recombination rate using the high-rank separable potentials, taking the identical 4He atoms as an application example. All the calculations converge quickly for the rank number N⩾3. The high-rank separable potential is valid for two-body scattering calculation of 4He atoms, but not accurate enough for reproducing the three-body scattering results by using only two-body s-wave interaction and describing the contributions of two-body high partial-waves to the three-body scattering for the 4He3 system.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>30501240</pmid><doi>10.1063/1.5045084</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2018-11, Vol.149 (20), p.204109-204109 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_30501240 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Dimers Faddeev equations Mathematical analysis Physics Scattering Stability analysis Trimers Wave interaction |
title | High-rank separable atom-atom interaction potential used for solving two-body Lippmann-Schwinger and three-body Faddeev equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-rank%20separable%20atom-atom%20interaction%20potential%20used%20for%20solving%20two-body%20Lippmann-Schwinger%20and%20three-body%20Faddeev%20equations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Li,%20Jing-Lun&rft.date=2018-11-28&rft.volume=149&rft.issue=20&rft.spage=204109&rft.epage=204109&rft.pages=204109-204109&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5045084&rft_dat=%3Cproquest_pubme%3E2139302859%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-7bebdcdbe037f5742680d1f7e6e4c6d9a7e7a1c261479bda9fd0802fbf55fff53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2139302859&rft_id=info:pmid/30501240&rfr_iscdi=true |