Loading…

Computational Prediction of Amino Acids Governing Protein-Membrane Interaction for the PIP 3 Cell Signaling System

Prediction and characterization of how transiently membrane-bound signaling proteins interact with the cell membrane is important for understanding and controlling cellular signal transduction networks. Existing computational methods rely on approximate descriptions of the components of the system o...

Full description

Saved in:
Bibliographic Details
Published in:Structure (London) 2019-02, Vol.27 (2), p.371
Main Authors: Irvine, William A, Flanagan, Jack U, Allison, Jane R
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 2
container_start_page 371
container_title Structure (London)
container_volume 27
creator Irvine, William A
Flanagan, Jack U
Allison, Jane R
description Prediction and characterization of how transiently membrane-bound signaling proteins interact with the cell membrane is important for understanding and controlling cellular signal transduction networks. Existing computational methods rely on approximate descriptions of the components of the system or their interactions, and thus are unable to identify residue- or lipid-specific contributions. Our rotational interaction energy profiling method allows rapid evaluation of an electrostatically optimal orientation of a protein for membrane association, as well as the residues or lipid species responsible for its favorability. This enables prediction of which aspects of the protein-membrane interaction to target experimentally, and thus the development of testable hypotheses, as well as providing efficient seeding of molecular dynamics simulations to further characterize the protein-membrane interaction. We illustrate our method on two proteins of the PIP cell signaling system, PTEN and PI3Kα.
doi_str_mv 10.1016/j.str.2018.10.014
format article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_30528597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30528597</sourcerecordid><originalsourceid>FETCH-LOGICAL-p93t-4c77ea9bd99cc04f0102a29c27a3d52f952baef7f17d850ec40481b8ae144b773</originalsourceid><addsrcrecordid>eNo1j9FKwzAYhYMgbk4fwBvJC7T-SdMluRxF52DiYLsfafpnZrRNSTNhb--GenX44HwHDiFPDHIGbP5yzMcUcw5MXTgHJm7IlCmpMsHUfELux_EIALwEuCOTAkquSi2nJFahG07JJB9609JNxMbbK9Dg6KLzfaAL65uRLsM3xt73h0snJPR99oFdHU2PdNUnjObXciHS9IV0s9rQglbYtnTrD5fpq7k9jwm7B3LrTDvi41_OyO7tdVe9Z-vP5aparLNBFykTVko0um60thaEAwbccG25NEVTcqdLXht00jHZqBLQChCK1cogE6KWspiR59_Z4VR32OyH6DsTz_v_78UPZ29bwg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational Prediction of Amino Acids Governing Protein-Membrane Interaction for the PIP 3 Cell Signaling System</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Irvine, William A ; Flanagan, Jack U ; Allison, Jane R</creator><creatorcontrib>Irvine, William A ; Flanagan, Jack U ; Allison, Jane R</creatorcontrib><description>Prediction and characterization of how transiently membrane-bound signaling proteins interact with the cell membrane is important for understanding and controlling cellular signal transduction networks. Existing computational methods rely on approximate descriptions of the components of the system or their interactions, and thus are unable to identify residue- or lipid-specific contributions. Our rotational interaction energy profiling method allows rapid evaluation of an electrostatically optimal orientation of a protein for membrane association, as well as the residues or lipid species responsible for its favorability. This enables prediction of which aspects of the protein-membrane interaction to target experimentally, and thus the development of testable hypotheses, as well as providing efficient seeding of molecular dynamics simulations to further characterize the protein-membrane interaction. We illustrate our method on two proteins of the PIP cell signaling system, PTEN and PI3Kα.</description><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2018.10.014</identifier><identifier>PMID: 30528597</identifier><language>eng</language><publisher>United States</publisher><subject>Amino Acids - metabolism ; Binding Sites ; Class I Phosphatidylinositol 3-Kinases - chemistry ; Class I Phosphatidylinositol 3-Kinases - metabolism ; Computational Biology - methods ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Phosphatidylinositol Phosphates - metabolism ; Protein Binding ; PTEN Phosphohydrolase - chemistry ; PTEN Phosphohydrolase - metabolism ; Signal Transduction</subject><ispartof>Structure (London), 2019-02, Vol.27 (2), p.371</ispartof><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30528597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Irvine, William A</creatorcontrib><creatorcontrib>Flanagan, Jack U</creatorcontrib><creatorcontrib>Allison, Jane R</creatorcontrib><title>Computational Prediction of Amino Acids Governing Protein-Membrane Interaction for the PIP 3 Cell Signaling System</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Prediction and characterization of how transiently membrane-bound signaling proteins interact with the cell membrane is important for understanding and controlling cellular signal transduction networks. Existing computational methods rely on approximate descriptions of the components of the system or their interactions, and thus are unable to identify residue- or lipid-specific contributions. Our rotational interaction energy profiling method allows rapid evaluation of an electrostatically optimal orientation of a protein for membrane association, as well as the residues or lipid species responsible for its favorability. This enables prediction of which aspects of the protein-membrane interaction to target experimentally, and thus the development of testable hypotheses, as well as providing efficient seeding of molecular dynamics simulations to further characterize the protein-membrane interaction. We illustrate our method on two proteins of the PIP cell signaling system, PTEN and PI3Kα.</description><subject>Amino Acids - metabolism</subject><subject>Binding Sites</subject><subject>Class I Phosphatidylinositol 3-Kinases - chemistry</subject><subject>Class I Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Computational Biology - methods</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Phosphatidylinositol Phosphates - metabolism</subject><subject>Protein Binding</subject><subject>PTEN Phosphohydrolase - chemistry</subject><subject>PTEN Phosphohydrolase - metabolism</subject><subject>Signal Transduction</subject><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1j9FKwzAYhYMgbk4fwBvJC7T-SdMluRxF52DiYLsfafpnZrRNSTNhb--GenX44HwHDiFPDHIGbP5yzMcUcw5MXTgHJm7IlCmpMsHUfELux_EIALwEuCOTAkquSi2nJFahG07JJB9609JNxMbbK9Dg6KLzfaAL65uRLsM3xt73h0snJPR99oFdHU2PdNUnjObXciHS9IV0s9rQglbYtnTrD5fpq7k9jwm7B3LrTDvi41_OyO7tdVe9Z-vP5aparLNBFykTVko0um60thaEAwbccG25NEVTcqdLXht00jHZqBLQChCK1cogE6KWspiR59_Z4VR32OyH6DsTz_v_78UPZ29bwg</recordid><startdate>20190205</startdate><enddate>20190205</enddate><creator>Irvine, William A</creator><creator>Flanagan, Jack U</creator><creator>Allison, Jane R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20190205</creationdate><title>Computational Prediction of Amino Acids Governing Protein-Membrane Interaction for the PIP 3 Cell Signaling System</title><author>Irvine, William A ; Flanagan, Jack U ; Allison, Jane R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p93t-4c77ea9bd99cc04f0102a29c27a3d52f952baef7f17d850ec40481b8ae144b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acids - metabolism</topic><topic>Binding Sites</topic><topic>Class I Phosphatidylinositol 3-Kinases - chemistry</topic><topic>Class I Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Computational Biology - methods</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Phosphatidylinositol Phosphates - metabolism</topic><topic>Protein Binding</topic><topic>PTEN Phosphohydrolase - chemistry</topic><topic>PTEN Phosphohydrolase - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irvine, William A</creatorcontrib><creatorcontrib>Flanagan, Jack U</creatorcontrib><creatorcontrib>Allison, Jane R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irvine, William A</au><au>Flanagan, Jack U</au><au>Allison, Jane R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Prediction of Amino Acids Governing Protein-Membrane Interaction for the PIP 3 Cell Signaling System</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2019-02-05</date><risdate>2019</risdate><volume>27</volume><issue>2</issue><spage>371</spage><pages>371-</pages><eissn>1878-4186</eissn><abstract>Prediction and characterization of how transiently membrane-bound signaling proteins interact with the cell membrane is important for understanding and controlling cellular signal transduction networks. Existing computational methods rely on approximate descriptions of the components of the system or their interactions, and thus are unable to identify residue- or lipid-specific contributions. Our rotational interaction energy profiling method allows rapid evaluation of an electrostatically optimal orientation of a protein for membrane association, as well as the residues or lipid species responsible for its favorability. This enables prediction of which aspects of the protein-membrane interaction to target experimentally, and thus the development of testable hypotheses, as well as providing efficient seeding of molecular dynamics simulations to further characterize the protein-membrane interaction. We illustrate our method on two proteins of the PIP cell signaling system, PTEN and PI3Kα.</abstract><cop>United States</cop><pmid>30528597</pmid><doi>10.1016/j.str.2018.10.014</doi></addata></record>
fulltext fulltext
identifier EISSN: 1878-4186
ispartof Structure (London), 2019-02, Vol.27 (2), p.371
issn 1878-4186
language eng
recordid cdi_pubmed_primary_30528597
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Amino Acids - metabolism
Binding Sites
Class I Phosphatidylinositol 3-Kinases - chemistry
Class I Phosphatidylinositol 3-Kinases - metabolism
Computational Biology - methods
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Membrane Proteins - chemistry
Membrane Proteins - metabolism
Models, Molecular
Molecular Dynamics Simulation
Phosphatidylinositol Phosphates - metabolism
Protein Binding
PTEN Phosphohydrolase - chemistry
PTEN Phosphohydrolase - metabolism
Signal Transduction
title Computational Prediction of Amino Acids Governing Protein-Membrane Interaction for the PIP 3 Cell Signaling System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Prediction%20of%20Amino%20Acids%20Governing%20Protein-Membrane%20Interaction%20for%20the%20PIP%203%20Cell%20Signaling%20System&rft.jtitle=Structure%20(London)&rft.au=Irvine,%20William%20A&rft.date=2019-02-05&rft.volume=27&rft.issue=2&rft.spage=371&rft.pages=371-&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2018.10.014&rft_dat=%3Cpubmed%3E30528597%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p93t-4c77ea9bd99cc04f0102a29c27a3d52f952baef7f17d850ec40481b8ae144b773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/30528597&rfr_iscdi=true