Loading…

Ultrafast manipulation of topologically enhanced surface transport driven by mid-infrared and terahertz pulses in Bi 2 Se 3

Topology-protected surface transport of ultimate thinness in three-dimensional topological insulators (TIs) is breaking new ground in quantum science and technology. Yet a challenge remains on how to disentangle and selectively control surface helical spin transport from the bulk contribution. Here...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-12, Vol.10 (1), p.607
Main Authors: Luo, L, Yang, X, Liu, X, Liu, Z, Vaswani, C, Cheng, D, Mootz, M, Zhao, X, Yao, Y, Wang, C-Z, Ho, K-M, Perakis, I E, Dobrowolska, M, Furdyna, J K, Wang, J
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Topology-protected surface transport of ultimate thinness in three-dimensional topological insulators (TIs) is breaking new ground in quantum science and technology. Yet a challenge remains on how to disentangle and selectively control surface helical spin transport from the bulk contribution. Here we use the mid-infrared and terahertz (THz) photoexcitation of exclusive intraband transitions to enable ultrafast manipulation of surface THz conductivity in Bi Se . The unique, transient electronic state is characterized by frequency-dependent carrier relaxations that directly distinguish the faster surface channel than the bulk with no complication from interband excitations or need for reduced bulk doping. We determine the topological enhancement ratio between bulk and surface scattering rates, i.e., γ /γ  ~3.80 in equilibrium. The ultra-broadband, wavelength-selective pumping may be applied to emerging topological semimetals for separation and control of the protected transport connected with the Weyl nodes from other bulk bands.
ISSN:2041-1723
DOI:10.1038/s41467-019-08559-6