Loading…

Falls Risk Classification of Older Adults Using Deep Neural Networks and Transfer Learning

Prior research in falls risk classification using inertial sensors has relied on the use of engineered features, which has resulted in a feature space containing hundreds of features that are likely redundant and possibly irrelevant. In this paper, we propose using fully convolutional neural network...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2020-01, Vol.24 (1), p.144-150
Main Authors: Martinez, Matthew, De Leon, Phillip L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prior research in falls risk classification using inertial sensors has relied on the use of engineered features, which has resulted in a feature space containing hundreds of features that are likely redundant and possibly irrelevant. In this paper, we propose using fully convolutional neural networks (FCNNs) to classify older adults at low or high risk of falling using inertial sensor data collected from a smartphone. Due to the limited nature of older adult inertial gait datasets, we first pre-train the FCNN models using a publicly available dataset for pedestrian activity recognition. Then via transfer learning, we train the network for falls risk classification. We show that via transfer learning, our falls risk classifier obtains an area under the receiver operating characteristic curve of 93.3%, which is 10.6% higher than the equivalent model trained without the use of transfer learning. Additionally, we show that our method outperforms other standard machine learning classifiers trained on features developed in prior research.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2019.2906499