Loading…

A scalable arbitrary waveform generator for atomic physics experiments based on field-programmable gate array technology

We present a field-programmable gate array (FPGA) based control system that has been implemented to control a strontium optical lattice clock at the National Physical Laboratory, UK. Bespoke printed circuit boards have been designed and manufactured, including an 8-channel, 16-bit digital to analog...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2019-04, Vol.90 (4), p.043101-043101
Main Authors: Donnellan, Sean, Hill, Ian R., Bowden, William, Hobson, Richard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a field-programmable gate array (FPGA) based control system that has been implemented to control a strontium optical lattice clock at the National Physical Laboratory, UK. Bespoke printed circuit boards have been designed and manufactured, including an 8-channel, 16-bit digital to analog converter board with a 2 μs update rate and a 4-channel direct-digital synthesis board clocked at 1 GHz. Each board includes its own FPGA with 28 digital output lines available alongside the specialized analog or radio frequency outputs. The system is scalable to a large number of control lines by stacking the individual boards in a master-slave arrangement. The timing of the digital and analog outputs is based on the FPGA clock and is thus very predictable and exhibits low jitter. A particular advantage of our hardware is its large data buffers that, when combined with a pseudoclock structure, allow complex waveforms to be created. A high reliability of the system has been demonstrated during extended atomic clock frequency comparisons.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.5051124