Loading…

Room-Temperature Sputtered SnO 2 as Robust Electron Transport Layer for Air-Stable and Efficient Perovskite Solar Cells on Rigid and Flexible Substrates

Extraordinary photovoltaic performance and intriguing optoelectronic properties of perovskite solar cells (PSCs) have aroused enormous interest from both academic research and photovoltaic (PV) industry. In order to bring PSC technology from laboratory to market, material stability, device flexibili...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2019-12, Vol.9 (1), p.6963
Main Authors: Kam, Matthew, Zhang, Qianpeng, Zhang, Daquan, Fan, Zhiyong
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extraordinary photovoltaic performance and intriguing optoelectronic properties of perovskite solar cells (PSCs) have aroused enormous interest from both academic research and photovoltaic (PV) industry. In order to bring PSC technology from laboratory to market, material stability, device flexibility, and scalability are important issues to address for vast production. Nevertheless, PSCs are still primarily prepared by solution methods which limit film scalability, while high-temperature processing of metal oxide electron transport layer (ETL) makes PSCs costly and incompatible with flexible substrates. Here, we demonstrate rarely-reported room-temperature radio frequency (RF) sputtered SnO as a promising ETL with suitable band structure, high transmittance, and excellent stability to replace its solution-processed counterpart. Power conversion efficiencies (PCEs) of 12.82% and 5.88% have been achieved on rigid glass substrate and flexible PEN substrate respectively. The former device retained 93% of its initial PCE after 192-hour exposure in dry air while the latter device maintained over 90% of its initial PCE after 100 consecutive bending cycles. The result is a solid stepping stone toward future PSC all-vapor-deposition fabrication which is being widely used in the PV industry now.
ISSN:2045-2322
DOI:10.1038/s41598-019-42962-9