Loading…

Utilization of Galleria mellonella larvae to characterize the development of Staphylococcus aureus infection

Staphylococcus aureus is a human opportunistic pathogen that causes a wide range of superficial and systemic infections in susceptible patients. Here we describe how an inoculum of S. aureus activates the cellular and humoral response of Galleria mellonella larvae while growing and disseminating thr...

Full description

Saved in:
Bibliographic Details
Published in:Microbiology (Society for General Microbiology) 2019-08, Vol.165 (8), p.863
Main Authors: Sheehan, Gerard, Dixon, Amy, Kavanagh, Kevin
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Staphylococcus aureus is a human opportunistic pathogen that causes a wide range of superficial and systemic infections in susceptible patients. Here we describe how an inoculum of S. aureus activates the cellular and humoral response of Galleria mellonella larvae while growing and disseminating throughout the host, forming nodules and ultimately killing the host. An inoculum of S. aureus (2×10 larva ) decreased larval viability at 24 (80±5.77 %), 48 (55.93±5.55 %) and 72 h (10.23±2.97 %) and was accompanied by significant proliferation and dissemination of S. aureus between 6 and 48 h and the formation of nodules in the host. The hemocyte (immune cell) densities increased between 4 and 24 h and hemocytes isolated from larvae after 24 h exposure to heat-killed S. aureus (2×10 larva ) showed altered killing kinetics as compared to those from control larvae. Alterations in the humoral immune response of larvae 6 and 24 h post-infection were also determined by quantitative shotgun proteomics. The proteome of 6 h-infected larvae was enriched for antimicrobial proteins, proteins of the prophenoloxidase cascade and a range of peptidoglycan recognition proteins. By 24 h there was a significant increase in the abundance of a range of antimicrobial peptides with anti-staphylococcal activity and proteins associated with nodule formation. The results presented here indicate how S. aureus interacts with the larval immune response, induces the expression of a variety of immune-related peptides and also forms nodules which are a hallmark of soft tissue infections during human infection.
ISSN:1465-2080
DOI:10.1099/mic.0.000813