Loading…

Haptic Feedback Perception and Learning With Cable-Driven Guidance in Exosuit Teleoperation of a Simulated Drone

Robotics teleoperation enables human operators to control the movements of distally located robots. The development of new wearable interfaces as alternatives to hand-held controllers has created new modalities of control, which are more intuitive to use. Nevertheless, such interfaces also require a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on haptics 2019-07, Vol.12 (3), p.375-385
Main Authors: Rognon, Carine, Ramachandran, Vivek, Wu, Amy R, Ijspeert, Auke J, Floreano, Dario
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Robotics teleoperation enables human operators to control the movements of distally located robots. The development of new wearable interfaces as alternatives to hand-held controllers has created new modalities of control, which are more intuitive to use. Nevertheless, such interfaces also require a period of adjustment before operators can carry out their tasks proficiently. In several fields of human-machine interaction, haptic guidance has proven to be an effective training tool for enhancing user performance. This paper presents the results of psychophysical and motor learning studies that were carried out with human participant to assess the effect of cable-driven haptic guidance for a task involving aerial robotic teleoperation. The guidance system was integrated into an exosuit, called the Flyjacket, that was developed to control drones with torso movements. Results for the just noticeable difference and from the Stevens Power Law suggest that the perception of force on the users' torso scales linearly with the amplitude of the force exerted through the cables and the perceived force is close to the magnitude of the stimulus. Motor learning studies reveal that this form of haptic guidance improves user performance in training, but this improvement is not retained when participants are evaluated without guidance.
ISSN:1939-1412
2329-4051
DOI:10.1109/TOH.2019.2925612