Loading…

Direct translocation of nanoparticles across a model cell membrane by nanoparticle-induced local enhancement of membrane potential

In biomedical technologies that use nanoparticles, the nanoparticles are often required to translocate across a cell membrane. Application of an external electric field has been used to increase the cell membrane permeability; however, damage to the cell is of great concern. Using a molecular dynami...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2019, Vol.21 (35), p.1883-18838
Main Authors: Nakamura, Hideya, Sezawa, Kyohei, Hata, Masataka, Ohsaki, Shuji, Watano, Satoru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c440t-73f3541eee92f0ab50e76b08cc6f39c25861cf5b106fe21ab53c2da31f6b9fff3
cites cdi_FETCH-LOGICAL-c440t-73f3541eee92f0ab50e76b08cc6f39c25861cf5b106fe21ab53c2da31f6b9fff3
container_end_page 18838
container_issue 35
container_start_page 1883
container_title Physical chemistry chemical physics : PCCP
container_volume 21
creator Nakamura, Hideya
Sezawa, Kyohei
Hata, Masataka
Ohsaki, Shuji
Watano, Satoru
description In biomedical technologies that use nanoparticles, the nanoparticles are often required to translocate across a cell membrane. Application of an external electric field has been used to increase the cell membrane permeability; however, damage to the cell is of great concern. Using a molecular dynamics simulation, we show that even under a weak external electric field that is lower than the membrane breakdown intensity, a cationic nanoparticle will directly translocate across a model cell membrane without membrane disruption. We then reveal its physical mechanism. At the contact interface between the nanoparticle and the cell membrane, the electric potential across the membrane is locally enhanced by superimposing the nanoparticle surface potential on the externally applied potential, resulting in its direct translocation. Our finding implies that, by controlling the nanoparticle-induced local enhancement of the membrane potential, the cellular delivery of nanoparticles via a non-endocytic and non-disruptive pathway can be realized. Nanoparticles directly translocate across a cell membrane by a locally enhanced membrane potential at the NP/cell-membrane contact interface.
doi_str_mv 10.1039/c9cp02935d
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_31322147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261281985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-73f3541eee92f0ab50e76b08cc6f39c25861cf5b106fe21ab53c2da31f6b9fff3</originalsourceid><addsrcrecordid>eNpdkctPwzAMxiMEYuNx4Q6KxAUhFfJou-aIOl7SJDjAuUpTR3Rqk5K0h135y0m3MQQnW_bPn2x_CJ1RckMJF7dKqI4wwZNqD01pnPJIkCze3-WzdIKOvF8SQmhC-SGacMoZo_Fsir7mtQPV495J4xurZF9bg63GRhrbSdfXqgGPpXLWh4BbW0GDFTQNbqEtwxTgcvWHjmpTDQoqPMo1GMyHNApaMP2ou5vqbB9KtWxO0IGWjYfTbTxG7w_3b_lTtHh5fM7vFpGKY9JHM655ElMAEEwTWSYEZmlJMqVSzYViSZZSpZOSklQDowHgilWSU52WQmvNj9HVRrdz9nMA3xdt7cdLwjZ28AVjKWUZFVkS0Mt_6NIOzoTtApVlhGUxG6nrDbV-jgNddK5upVsVlBSjM0Uu8te1M_MAX2wlh7KFaof-WBGA8w3gvNp1f63l3wRXlTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288028425</pqid></control><display><type>article</type><title>Direct translocation of nanoparticles across a model cell membrane by nanoparticle-induced local enhancement of membrane potential</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Nakamura, Hideya ; Sezawa, Kyohei ; Hata, Masataka ; Ohsaki, Shuji ; Watano, Satoru</creator><creatorcontrib>Nakamura, Hideya ; Sezawa, Kyohei ; Hata, Masataka ; Ohsaki, Shuji ; Watano, Satoru</creatorcontrib><description>In biomedical technologies that use nanoparticles, the nanoparticles are often required to translocate across a cell membrane. Application of an external electric field has been used to increase the cell membrane permeability; however, damage to the cell is of great concern. Using a molecular dynamics simulation, we show that even under a weak external electric field that is lower than the membrane breakdown intensity, a cationic nanoparticle will directly translocate across a model cell membrane without membrane disruption. We then reveal its physical mechanism. At the contact interface between the nanoparticle and the cell membrane, the electric potential across the membrane is locally enhanced by superimposing the nanoparticle surface potential on the externally applied potential, resulting in its direct translocation. Our finding implies that, by controlling the nanoparticle-induced local enhancement of the membrane potential, the cellular delivery of nanoparticles via a non-endocytic and non-disruptive pathway can be realized. Nanoparticles directly translocate across a cell membrane by a locally enhanced membrane potential at the NP/cell-membrane contact interface.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp02935d</identifier><identifier>PMID: 31322147</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Cell membranes ; Computer simulation ; Disruption ; Electric contacts ; Electric fields ; Molecular dynamics ; Nanoparticles</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (35), p.1883-18838</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-73f3541eee92f0ab50e76b08cc6f39c25861cf5b106fe21ab53c2da31f6b9fff3</citedby><cites>FETCH-LOGICAL-c440t-73f3541eee92f0ab50e76b08cc6f39c25861cf5b106fe21ab53c2da31f6b9fff3</cites><orcidid>0000-0003-2167-762X ; 0000-0002-5234-9007</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31322147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakamura, Hideya</creatorcontrib><creatorcontrib>Sezawa, Kyohei</creatorcontrib><creatorcontrib>Hata, Masataka</creatorcontrib><creatorcontrib>Ohsaki, Shuji</creatorcontrib><creatorcontrib>Watano, Satoru</creatorcontrib><title>Direct translocation of nanoparticles across a model cell membrane by nanoparticle-induced local enhancement of membrane potential</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>In biomedical technologies that use nanoparticles, the nanoparticles are often required to translocate across a cell membrane. Application of an external electric field has been used to increase the cell membrane permeability; however, damage to the cell is of great concern. Using a molecular dynamics simulation, we show that even under a weak external electric field that is lower than the membrane breakdown intensity, a cationic nanoparticle will directly translocate across a model cell membrane without membrane disruption. We then reveal its physical mechanism. At the contact interface between the nanoparticle and the cell membrane, the electric potential across the membrane is locally enhanced by superimposing the nanoparticle surface potential on the externally applied potential, resulting in its direct translocation. Our finding implies that, by controlling the nanoparticle-induced local enhancement of the membrane potential, the cellular delivery of nanoparticles via a non-endocytic and non-disruptive pathway can be realized. Nanoparticles directly translocate across a cell membrane by a locally enhanced membrane potential at the NP/cell-membrane contact interface.</description><subject>Cell membranes</subject><subject>Computer simulation</subject><subject>Disruption</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Molecular dynamics</subject><subject>Nanoparticles</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkctPwzAMxiMEYuNx4Q6KxAUhFfJou-aIOl7SJDjAuUpTR3Rqk5K0h135y0m3MQQnW_bPn2x_CJ1RckMJF7dKqI4wwZNqD01pnPJIkCze3-WzdIKOvF8SQmhC-SGacMoZo_Fsir7mtQPV495J4xurZF9bg63GRhrbSdfXqgGPpXLWh4BbW0GDFTQNbqEtwxTgcvWHjmpTDQoqPMo1GMyHNApaMP2ou5vqbB9KtWxO0IGWjYfTbTxG7w_3b_lTtHh5fM7vFpGKY9JHM655ElMAEEwTWSYEZmlJMqVSzYViSZZSpZOSklQDowHgilWSU52WQmvNj9HVRrdz9nMA3xdt7cdLwjZ28AVjKWUZFVkS0Mt_6NIOzoTtApVlhGUxG6nrDbV-jgNddK5upVsVlBSjM0Uu8te1M_MAX2wlh7KFaof-WBGA8w3gvNp1f63l3wRXlTw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Nakamura, Hideya</creator><creator>Sezawa, Kyohei</creator><creator>Hata, Masataka</creator><creator>Ohsaki, Shuji</creator><creator>Watano, Satoru</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2167-762X</orcidid><orcidid>https://orcid.org/0000-0002-5234-9007</orcidid></search><sort><creationdate>2019</creationdate><title>Direct translocation of nanoparticles across a model cell membrane by nanoparticle-induced local enhancement of membrane potential</title><author>Nakamura, Hideya ; Sezawa, Kyohei ; Hata, Masataka ; Ohsaki, Shuji ; Watano, Satoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-73f3541eee92f0ab50e76b08cc6f39c25861cf5b106fe21ab53c2da31f6b9fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cell membranes</topic><topic>Computer simulation</topic><topic>Disruption</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Molecular dynamics</topic><topic>Nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Hideya</creatorcontrib><creatorcontrib>Sezawa, Kyohei</creatorcontrib><creatorcontrib>Hata, Masataka</creatorcontrib><creatorcontrib>Ohsaki, Shuji</creatorcontrib><creatorcontrib>Watano, Satoru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Hideya</au><au>Sezawa, Kyohei</au><au>Hata, Masataka</au><au>Ohsaki, Shuji</au><au>Watano, Satoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct translocation of nanoparticles across a model cell membrane by nanoparticle-induced local enhancement of membrane potential</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>35</issue><spage>1883</spage><epage>18838</epage><pages>1883-18838</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In biomedical technologies that use nanoparticles, the nanoparticles are often required to translocate across a cell membrane. Application of an external electric field has been used to increase the cell membrane permeability; however, damage to the cell is of great concern. Using a molecular dynamics simulation, we show that even under a weak external electric field that is lower than the membrane breakdown intensity, a cationic nanoparticle will directly translocate across a model cell membrane without membrane disruption. We then reveal its physical mechanism. At the contact interface between the nanoparticle and the cell membrane, the electric potential across the membrane is locally enhanced by superimposing the nanoparticle surface potential on the externally applied potential, resulting in its direct translocation. Our finding implies that, by controlling the nanoparticle-induced local enhancement of the membrane potential, the cellular delivery of nanoparticles via a non-endocytic and non-disruptive pathway can be realized. Nanoparticles directly translocate across a cell membrane by a locally enhanced membrane potential at the NP/cell-membrane contact interface.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31322147</pmid><doi>10.1039/c9cp02935d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2167-762X</orcidid><orcidid>https://orcid.org/0000-0002-5234-9007</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2019, Vol.21 (35), p.1883-18838
issn 1463-9076
1463-9084
language eng
recordid cdi_pubmed_primary_31322147
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Cell membranes
Computer simulation
Disruption
Electric contacts
Electric fields
Molecular dynamics
Nanoparticles
title Direct translocation of nanoparticles across a model cell membrane by nanoparticle-induced local enhancement of membrane potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20translocation%20of%20nanoparticles%20across%20a%20model%20cell%20membrane%20by%20nanoparticle-induced%20local%20enhancement%20of%20membrane%20potential&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Nakamura,%20Hideya&rft.date=2019&rft.volume=21&rft.issue=35&rft.spage=1883&rft.epage=18838&rft.pages=1883-18838&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp02935d&rft_dat=%3Cproquest_pubme%3E2261281985%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-73f3541eee92f0ab50e76b08cc6f39c25861cf5b106fe21ab53c2da31f6b9fff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2288028425&rft_id=info:pmid/31322147&rfr_iscdi=true