Loading…

The usefulness of large sample size patient dose audits for optimisation of CT automatic exposure control (AEC) settings

The aim of this study was to demonstrate the usefulness of large sample size patient dose audits for optimisation of CT automatic exposure control (AEC) settings, even when the investigation is limited to only three scanners at a single institution. Pre-optimisation patient dose audits of common CT...

Full description

Saved in:
Bibliographic Details
Published in:Journal of radiological protection 2019-09, Vol.39 (3), p.938-949
Main Authors: Moore, Craig S, Wood, Tim J, Saunderson, John R, Beavis, Andrew W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to demonstrate the usefulness of large sample size patient dose audits for optimisation of CT automatic exposure control (AEC) settings, even when the investigation is limited to only three scanners at a single institution. Pre-optimisation patient dose audits of common CT examinations (n > 200 for each protocol) on three CT scanners (two Philips Brilliance and one Toshiba Aquilion) using radiology information system (RIS) data were conducted showing sub-optimal CT AEC performance on the Toshiba scanner. Based on these results, an optimisation exercise was carried out on the non-optimally performing scanner by phantom measurement and investigation of system configuration. Post-optimisation patient dose audits were subsequently carried out to assess the success of the optimisation exercise demonstrating standardisation of doses; median dose-length-product values were reduced by up to 43% on the sub-optimal scanner without any adverse effect on clinical image quality. This study has demonstrated that large sample patient dose audits using RIS data can be instrumental in identifying and rectifying sub-optimal CT AEC performance, even when the investigation is limited to only three scanners at a single institution.
ISSN:0952-4746
1361-6498
DOI:10.1088/1361-6498/ab3894