Loading…

Three-dimensional structural optimization of a cementless hip stem using a bi-directional evolutionary method

A correct choice of stem geometry can increase the lifetime of hip implant in a total hip arthroplasty. This study presents a numerical methodology for structural optimization of stem geometry using a bi-directional evolutionary structural optimization method. The optimization problem was formulated...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in biomechanics and biomedical engineering 2020-01, Vol.23 (1), p.1-11
Main Authors: Rahchamani, Reza, Soheilifard, Reza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A correct choice of stem geometry can increase the lifetime of hip implant in a total hip arthroplasty. This study presents a numerical methodology for structural optimization of stem geometry using a bi-directional evolutionary structural optimization method. The optimization problem was formulated with the objective of minimizing the stresses in the bone-stem interface. Finite element analysis was used to obtain stress distributions by three-dimensional simulation of the implant and the surrounding bone under normal walking conditions. To compare the initial and the optimal stems, the von Mises stress distribution in the bone-implant interface was investigated. Results showed that the optimization procedure leads to a decrease in the stress concentration in the implant and a reduction in stress shielding of the surrounding bone. Furthermore, periprosthetic bone adaptation was analyzed numerically using an adaptive bone remodeling procedure. The remodeling results showed that the bone mass loss could be reduced by 16% in the optimal implant compared to the initial one.
ISSN:1025-5842
1476-8259
DOI:10.1080/10255842.2019.1661387