Loading…
Adaptive Fuzzy Tracking Control for a Class of Uncertain Switched Nonlinear Systems With Full-State Constraints and Input Saturations
In this article, an adaptive fuzzy tracking control scheme is developed for a class of uncertain switched nonlinear systems with input saturations and full-state constraints. First to surmount the design difficulty with respect to a saturation nonlinearity controller, a nonlinear smooth function app...
Saved in:
Published in: | IEEE transactions on cybernetics 2021-12, Vol.51 (12), p.6054-6065 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, an adaptive fuzzy tracking control scheme is developed for a class of uncertain switched nonlinear systems with input saturations and full-state constraints. First to surmount the design difficulty with respect to a saturation nonlinearity controller, a nonlinear smooth function approximating the nondifferential saturation function is introduced to establish a standard switched adaptive tracking control strategy based on the mean-value theorem and the input compensation technique. Then, invoking fuzzy-logic systems (FLSs), a novel analysis method of average dwell time for switched nonlinear systems with full-state constraints is proposed by using an artful logarithmic inequality. Furthermore, the designed adaptive controller can ensure that all the states of uncertain switched nonlinear systems are not to violate the set constraint bounds by employing barrier Lyapunov functions (BLFs), and that the system output tracking error can converge to a desired neighborhood of the origin within a suitable compact set. Finally, the simulation results are given to demonstrate the validity of the presented approach. |
---|---|
ISSN: | 2168-2267 2168-2275 |
DOI: | 10.1109/TCYB.2020.2965800 |