Loading…
Generalized Convolution Spectral Mixture for Multitask Gaussian Processes
Multitask Gaussian processes (MTGPs) are a powerful approach for modeling dependencies between multiple related tasks or functions for joint regression. Current kernels for MTGPs cannot fully model nonlinear task correlations and other types of dependencies. In this article, we address this limitati...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2020-12, Vol.31 (12), p.5613-5623 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-bc1c568fe7ae7a9b1b20f7187b5d3f3594112486d8612419f3631b1ddbe380d03 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-bc1c568fe7ae7a9b1b20f7187b5d3f3594112486d8612419f3631b1ddbe380d03 |
container_end_page | 5623 |
container_issue | 12 |
container_start_page | 5613 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 31 |
creator | Chen, Kai van Laarhoven, Twan Groot, Perry Chen, Jinsong Marchiori, Elena |
description | Multitask Gaussian processes (MTGPs) are a powerful approach for modeling dependencies between multiple related tasks or functions for joint regression. Current kernels for MTGPs cannot fully model nonlinear task correlations and other types of dependencies. In this article, we address this limitation. We focus on spectral mixture (SM) kernels and propose an enhancement of this type of kernels, called multitask generalized convolution SM (MT-GCSM) kernel. The MT-GCSM kernel can model nonlinear task correlations and dependence between components, including time and phase delay dependence. Each task in MT-GCSM has its GCSM kernel with its number of convolution structures, and dependencies between all components from different tasks are considered. Another constraint of current kernels for MTGPs is that components from different tasks are aligned. Here, we lift this constraint by using inner and outer full cross convolution between a base component and the reversed complex conjugate of another base component. Extensive experiments on two synthetic and three real-life data sets illustrate the difference between MT-GCSM and previous SM kernels as well as the practical effectiveness of MT-GCSM. |
doi_str_mv | 10.1109/TNNLS.2020.2980779 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32305940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9068485</ieee_id><sourcerecordid>2467298463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-bc1c568fe7ae7a9b1b20f7187b5d3f3594112486d8612419f3631b1ddbe380d03</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgIMottT-AQVZ8OJlax672eQoRWuhVaEVvIV9zELqdlOTjai_3tTWHhwGZmC-GYYPoXOCR4RgebN8fJwtRhRTPKJS4CyTR6hPCacxZUIcH_rstYeGzq1wCI5TnshT1GOU4VQmuI-mE2jB5o3-hioam_bDNL7Tpo0WGyi7MIjm-rPzFqLa2Gjum053uXuLJrl3Tudt9GxNCc6BO0Mndd44GO7rAL3c3y3HD_HsaTId387iksm0i4uSlCkXNWR5SFmQguI6IyIr0orVLHxFCE0ErwQPlciacUYKUlUFMIErzAboend3Y827B9eptXYlNE3egvFOUSZpknEst-jVP3RlvG3Dd4omPAveEs4CRXdUaY1zFmq1sXqd2y9FsNq6Vr-u1da12rsOS5f7075YQ3VY-TMbgIsdoAHgMJaYi0Sk7AeXFoIB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467298463</pqid></control><display><type>article</type><title>Generalized Convolution Spectral Mixture for Multitask Gaussian Processes</title><source>IEEE Xplore (Online service)</source><creator>Chen, Kai ; van Laarhoven, Twan ; Groot, Perry ; Chen, Jinsong ; Marchiori, Elena</creator><creatorcontrib>Chen, Kai ; van Laarhoven, Twan ; Groot, Perry ; Chen, Jinsong ; Marchiori, Elena</creatorcontrib><description>Multitask Gaussian processes (MTGPs) are a powerful approach for modeling dependencies between multiple related tasks or functions for joint regression. Current kernels for MTGPs cannot fully model nonlinear task correlations and other types of dependencies. In this article, we address this limitation. We focus on spectral mixture (SM) kernels and propose an enhancement of this type of kernels, called multitask generalized convolution SM (MT-GCSM) kernel. The MT-GCSM kernel can model nonlinear task correlations and dependence between components, including time and phase delay dependence. Each task in MT-GCSM has its GCSM kernel with its number of convolution structures, and dependencies between all components from different tasks are considered. Another constraint of current kernels for MTGPs is that components from different tasks are aligned. Here, we lift this constraint by using inner and outer full cross convolution between a base component and the reversed complex conjugate of another base component. Extensive experiments on two synthetic and three real-life data sets illustrate the difference between MT-GCSM and previous SM kernels as well as the practical effectiveness of MT-GCSM.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.2980779</identifier><identifier>PMID: 32305940</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Convolution ; Correlation ; Cross convolution ; Dependence ; Frequency-domain analysis ; Gaussian process ; Gaussian processes ; Gaussian processes (GPs) ; Kernel ; Kernels ; multitask learning ; spectral mixture (SM) ; Task analysis ; task dependencies</subject><ispartof>IEEE transaction on neural networks and learning systems, 2020-12, Vol.31 (12), p.5613-5623</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-bc1c568fe7ae7a9b1b20f7187b5d3f3594112486d8612419f3631b1ddbe380d03</citedby><cites>FETCH-LOGICAL-c395t-bc1c568fe7ae7a9b1b20f7187b5d3f3594112486d8612419f3631b1ddbe380d03</cites><orcidid>0000-0002-4081-0687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9068485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32305940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>van Laarhoven, Twan</creatorcontrib><creatorcontrib>Groot, Perry</creatorcontrib><creatorcontrib>Chen, Jinsong</creatorcontrib><creatorcontrib>Marchiori, Elena</creatorcontrib><title>Generalized Convolution Spectral Mixture for Multitask Gaussian Processes</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Multitask Gaussian processes (MTGPs) are a powerful approach for modeling dependencies between multiple related tasks or functions for joint regression. Current kernels for MTGPs cannot fully model nonlinear task correlations and other types of dependencies. In this article, we address this limitation. We focus on spectral mixture (SM) kernels and propose an enhancement of this type of kernels, called multitask generalized convolution SM (MT-GCSM) kernel. The MT-GCSM kernel can model nonlinear task correlations and dependence between components, including time and phase delay dependence. Each task in MT-GCSM has its GCSM kernel with its number of convolution structures, and dependencies between all components from different tasks are considered. Another constraint of current kernels for MTGPs is that components from different tasks are aligned. Here, we lift this constraint by using inner and outer full cross convolution between a base component and the reversed complex conjugate of another base component. Extensive experiments on two synthetic and three real-life data sets illustrate the difference between MT-GCSM and previous SM kernels as well as the practical effectiveness of MT-GCSM.</description><subject>Convolution</subject><subject>Correlation</subject><subject>Cross convolution</subject><subject>Dependence</subject><subject>Frequency-domain analysis</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Gaussian processes (GPs)</subject><subject>Kernel</subject><subject>Kernels</subject><subject>multitask learning</subject><subject>spectral mixture (SM)</subject><subject>Task analysis</subject><subject>task dependencies</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEQgIMottT-AQVZ8OJlax672eQoRWuhVaEVvIV9zELqdlOTjai_3tTWHhwGZmC-GYYPoXOCR4RgebN8fJwtRhRTPKJS4CyTR6hPCacxZUIcH_rstYeGzq1wCI5TnshT1GOU4VQmuI-mE2jB5o3-hioam_bDNL7Tpo0WGyi7MIjm-rPzFqLa2Gjum053uXuLJrl3Tudt9GxNCc6BO0Mndd44GO7rAL3c3y3HD_HsaTId387iksm0i4uSlCkXNWR5SFmQguI6IyIr0orVLHxFCE0ErwQPlciacUYKUlUFMIErzAboend3Y827B9eptXYlNE3egvFOUSZpknEst-jVP3RlvG3Dd4omPAveEs4CRXdUaY1zFmq1sXqd2y9FsNq6Vr-u1da12rsOS5f7075YQ3VY-TMbgIsdoAHgMJaYi0Sk7AeXFoIB</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chen, Kai</creator><creator>van Laarhoven, Twan</creator><creator>Groot, Perry</creator><creator>Chen, Jinsong</creator><creator>Marchiori, Elena</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4081-0687</orcidid></search><sort><creationdate>20201201</creationdate><title>Generalized Convolution Spectral Mixture for Multitask Gaussian Processes</title><author>Chen, Kai ; van Laarhoven, Twan ; Groot, Perry ; Chen, Jinsong ; Marchiori, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-bc1c568fe7ae7a9b1b20f7187b5d3f3594112486d8612419f3631b1ddbe380d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convolution</topic><topic>Correlation</topic><topic>Cross convolution</topic><topic>Dependence</topic><topic>Frequency-domain analysis</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Gaussian processes (GPs)</topic><topic>Kernel</topic><topic>Kernels</topic><topic>multitask learning</topic><topic>spectral mixture (SM)</topic><topic>Task analysis</topic><topic>task dependencies</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>van Laarhoven, Twan</creatorcontrib><creatorcontrib>Groot, Perry</creatorcontrib><creatorcontrib>Chen, Jinsong</creatorcontrib><creatorcontrib>Marchiori, Elena</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kai</au><au>van Laarhoven, Twan</au><au>Groot, Perry</au><au>Chen, Jinsong</au><au>Marchiori, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Convolution Spectral Mixture for Multitask Gaussian Processes</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>31</volume><issue>12</issue><spage>5613</spage><epage>5623</epage><pages>5613-5623</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Multitask Gaussian processes (MTGPs) are a powerful approach for modeling dependencies between multiple related tasks or functions for joint regression. Current kernels for MTGPs cannot fully model nonlinear task correlations and other types of dependencies. In this article, we address this limitation. We focus on spectral mixture (SM) kernels and propose an enhancement of this type of kernels, called multitask generalized convolution SM (MT-GCSM) kernel. The MT-GCSM kernel can model nonlinear task correlations and dependence between components, including time and phase delay dependence. Each task in MT-GCSM has its GCSM kernel with its number of convolution structures, and dependencies between all components from different tasks are considered. Another constraint of current kernels for MTGPs is that components from different tasks are aligned. Here, we lift this constraint by using inner and outer full cross convolution between a base component and the reversed complex conjugate of another base component. Extensive experiments on two synthetic and three real-life data sets illustrate the difference between MT-GCSM and previous SM kernels as well as the practical effectiveness of MT-GCSM.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32305940</pmid><doi>10.1109/TNNLS.2020.2980779</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4081-0687</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2020-12, Vol.31 (12), p.5613-5623 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_32305940 |
source | IEEE Xplore (Online service) |
subjects | Convolution Correlation Cross convolution Dependence Frequency-domain analysis Gaussian process Gaussian processes Gaussian processes (GPs) Kernel Kernels multitask learning spectral mixture (SM) Task analysis task dependencies |
title | Generalized Convolution Spectral Mixture for Multitask Gaussian Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Convolution%20Spectral%20Mixture%20for%20Multitask%20Gaussian%20Processes&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Chen,%20Kai&rft.date=2020-12-01&rft.volume=31&rft.issue=12&rft.spage=5613&rft.epage=5623&rft.pages=5613-5623&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2020.2980779&rft_dat=%3Cproquest_pubme%3E2467298463%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-bc1c568fe7ae7a9b1b20f7187b5d3f3594112486d8612419f3631b1ddbe380d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2467298463&rft_id=info:pmid/32305940&rft_ieee_id=9068485&rfr_iscdi=true |