Loading…
Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination
Exposing catalytically active metal sites in metal-organic frameworks with maintained porosity could accelerate electron transfer, leading to improved performances in electrochemical energy storage and conversion. Here, we report a series of quasi-ZIF-67 obtained from low temperature calcination of...
Saved in:
Published in: | ACS applied materials & interfaces 2020-06 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | ACS applied materials & interfaces |
container_volume | |
creator | Zhu, Rongmei Ding, Jiawei Yang, Jinpeng Pang, Huan Xu, Qiang Zhang, Daliang Braunstein, Pierre |
description | Exposing catalytically active metal sites in metal-organic frameworks with maintained porosity could accelerate electron transfer, leading to improved performances in electrochemical energy storage and conversion. Here, we report a series of quasi-ZIF-67 obtained from low temperature calcination of ZIF-67 for electrocatalytic oxygen evolution reaction (OER) and reveal the nanostructural structure via the spherical aberration-corrected transmission electron microscopy. The quasi-ZIF-67-350 not only possesses a large Brunauer-Emmett-Teller surface area of 2038.2 m
·g
but also presents an extremely low charge-transfer resistance of 15.0 Ω. In catalyzing the OER process, quasi-ZIF-67-350 displays a low overpotential of 286 mV at 10 mA cm
in the electrolyte of 1.0 M KOH. The acquired quasi-ZIF-67 demonstrates a high catalytic activity in OER, and the controlled calcination strategy undoubtedly paves a way in synthesizing low-cost and efficient electrocatalysts. |
doi_str_mv | 10.1021/acsami.0c05450 |
format | article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_32378882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32378882</sourcerecordid><originalsourceid>FETCH-LOGICAL-p108t-7cd8351c809cab8ff39cb1b344d788c3beb10c1cf62b716b712c615fba77ad93</originalsourceid><addsrcrecordid>eNo1T01Lw0AUXASxtXr1KPsHUvcjyW6OtbRaCBQlJy_l7cumrOSLZBPNvzd-HYYZhnmPGULuOFtzJvgDYA-VWzNkURixC7LkSRgGWkRiQa77_p2xWAoWXZGFFFJprcWSnF8G6F3wdtgHsaJF09HHpum9zenxczrbmu7Gphy8a2r6agF_xBY8lJN3SDezMTo_0dEBBZo2HzSzVWs78ENn52CJrobvoxtyWUDZ29s_XpFsv8u2z0F6fDpsN2nQcqZ9oDDXMuKoWYJgdFHIBA03MgzzuTBKYw1nyLGIhVE8niEw5lFhQCnIE7ki979v28FUNj-1naugm07_g-UXe1ZX5Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhu, Rongmei ; Ding, Jiawei ; Yang, Jinpeng ; Pang, Huan ; Xu, Qiang ; Zhang, Daliang ; Braunstein, Pierre</creator><creatorcontrib>Zhu, Rongmei ; Ding, Jiawei ; Yang, Jinpeng ; Pang, Huan ; Xu, Qiang ; Zhang, Daliang ; Braunstein, Pierre</creatorcontrib><description>Exposing catalytically active metal sites in metal-organic frameworks with maintained porosity could accelerate electron transfer, leading to improved performances in electrochemical energy storage and conversion. Here, we report a series of quasi-ZIF-67 obtained from low temperature calcination of ZIF-67 for electrocatalytic oxygen evolution reaction (OER) and reveal the nanostructural structure via the spherical aberration-corrected transmission electron microscopy. The quasi-ZIF-67-350 not only possesses a large Brunauer-Emmett-Teller surface area of 2038.2 m
·g
but also presents an extremely low charge-transfer resistance of 15.0 Ω. In catalyzing the OER process, quasi-ZIF-67-350 displays a low overpotential of 286 mV at 10 mA cm
in the electrolyte of 1.0 M KOH. The acquired quasi-ZIF-67 demonstrates a high catalytic activity in OER, and the controlled calcination strategy undoubtedly paves a way in synthesizing low-cost and efficient electrocatalysts.</description><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c05450</identifier><identifier>PMID: 32378882</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials & interfaces, 2020-06</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5319-0480 ; 0000-0001-5385-9650 ; 0000-0002-4377-604X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32378882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Rongmei</creatorcontrib><creatorcontrib>Ding, Jiawei</creatorcontrib><creatorcontrib>Yang, Jinpeng</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Zhang, Daliang</creatorcontrib><creatorcontrib>Braunstein, Pierre</creatorcontrib><title>Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Exposing catalytically active metal sites in metal-organic frameworks with maintained porosity could accelerate electron transfer, leading to improved performances in electrochemical energy storage and conversion. Here, we report a series of quasi-ZIF-67 obtained from low temperature calcination of ZIF-67 for electrocatalytic oxygen evolution reaction (OER) and reveal the nanostructural structure via the spherical aberration-corrected transmission electron microscopy. The quasi-ZIF-67-350 not only possesses a large Brunauer-Emmett-Teller surface area of 2038.2 m
·g
but also presents an extremely low charge-transfer resistance of 15.0 Ω. In catalyzing the OER process, quasi-ZIF-67-350 displays a low overpotential of 286 mV at 10 mA cm
in the electrolyte of 1.0 M KOH. The acquired quasi-ZIF-67 demonstrates a high catalytic activity in OER, and the controlled calcination strategy undoubtedly paves a way in synthesizing low-cost and efficient electrocatalysts.</description><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1T01Lw0AUXASxtXr1KPsHUvcjyW6OtbRaCBQlJy_l7cumrOSLZBPNvzd-HYYZhnmPGULuOFtzJvgDYA-VWzNkURixC7LkSRgGWkRiQa77_p2xWAoWXZGFFFJprcWSnF8G6F3wdtgHsaJF09HHpum9zenxczrbmu7Gphy8a2r6agF_xBY8lJN3SDezMTo_0dEBBZo2HzSzVWs78ENn52CJrobvoxtyWUDZ29s_XpFsv8u2z0F6fDpsN2nQcqZ9oDDXMuKoWYJgdFHIBA03MgzzuTBKYw1nyLGIhVE8niEw5lFhQCnIE7ki979v28FUNj-1naugm07_g-UXe1ZX5Q</recordid><startdate>20200603</startdate><enddate>20200603</enddate><creator>Zhu, Rongmei</creator><creator>Ding, Jiawei</creator><creator>Yang, Jinpeng</creator><creator>Pang, Huan</creator><creator>Xu, Qiang</creator><creator>Zhang, Daliang</creator><creator>Braunstein, Pierre</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid><orcidid>https://orcid.org/0000-0001-5385-9650</orcidid><orcidid>https://orcid.org/0000-0002-4377-604X</orcidid></search><sort><creationdate>20200603</creationdate><title>Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination</title><author>Zhu, Rongmei ; Ding, Jiawei ; Yang, Jinpeng ; Pang, Huan ; Xu, Qiang ; Zhang, Daliang ; Braunstein, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p108t-7cd8351c809cab8ff39cb1b344d788c3beb10c1cf62b716b712c615fba77ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Rongmei</creatorcontrib><creatorcontrib>Ding, Jiawei</creatorcontrib><creatorcontrib>Yang, Jinpeng</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Zhang, Daliang</creatorcontrib><creatorcontrib>Braunstein, Pierre</creatorcontrib><collection>PubMed</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Rongmei</au><au>Ding, Jiawei</au><au>Yang, Jinpeng</au><au>Pang, Huan</au><au>Xu, Qiang</au><au>Zhang, Daliang</au><au>Braunstein, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2020-06-03</date><risdate>2020</risdate><eissn>1944-8252</eissn><abstract>Exposing catalytically active metal sites in metal-organic frameworks with maintained porosity could accelerate electron transfer, leading to improved performances in electrochemical energy storage and conversion. Here, we report a series of quasi-ZIF-67 obtained from low temperature calcination of ZIF-67 for electrocatalytic oxygen evolution reaction (OER) and reveal the nanostructural structure via the spherical aberration-corrected transmission electron microscopy. The quasi-ZIF-67-350 not only possesses a large Brunauer-Emmett-Teller surface area of 2038.2 m
·g
but also presents an extremely low charge-transfer resistance of 15.0 Ω. In catalyzing the OER process, quasi-ZIF-67-350 displays a low overpotential of 286 mV at 10 mA cm
in the electrolyte of 1.0 M KOH. The acquired quasi-ZIF-67 demonstrates a high catalytic activity in OER, and the controlled calcination strategy undoubtedly paves a way in synthesizing low-cost and efficient electrocatalysts.</abstract><cop>United States</cop><pmid>32378882</pmid><doi>10.1021/acsami.0c05450</doi><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid><orcidid>https://orcid.org/0000-0001-5385-9650</orcidid><orcidid>https://orcid.org/0000-0002-4377-604X</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1944-8252 |
ispartof | ACS applied materials & interfaces, 2020-06 |
issn | 1944-8252 |
language | eng |
recordid | cdi_pubmed_primary_32378882 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Quasi-ZIF-67 for Boosted Oxygen Evolution Reaction Catalytic Activity via a Low Temperature Calcination |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A39%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-ZIF-67%20for%20Boosted%20Oxygen%20Evolution%20Reaction%20Catalytic%20Activity%20via%20a%20Low%20Temperature%20Calcination&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhu,%20Rongmei&rft.date=2020-06-03&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c05450&rft_dat=%3Cpubmed%3E32378882%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p108t-7cd8351c809cab8ff39cb1b344d788c3beb10c1cf62b716b712c615fba77ad93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32378882&rfr_iscdi=true |