Loading…
Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette
Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active...
Saved in:
Published in: | Analyst (London) 2020-07, Vol.145 (14), p.4852-4859 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3 |
container_end_page | 4859 |
container_issue | 14 |
container_start_page | 4852 |
container_title | Analyst (London) |
container_volume | 145 |
creator | Guo, Jing Sesena Rubfiaro, Alberto Lai, Yanhao Moscoso, Joseph Chen, Feng Liu, Yuan Wang, Xuewen He, Jin |
description | Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH
i
) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH
i
change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH
e
) change. The HeLa cancer cells can better resist pH
e
change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers.
SERS-active flexible nanopipettes can be used to conduct long-term reliable intracellular single-cell analysis. |
doi_str_mv | 10.1039/d0an00838a |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32542257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423085442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3</originalsourceid><addsrcrecordid>eNp9kc1Lw0AQxRdRbK1evCsRLyJEZ7_S9FjaaoWiYPUcppuNpKSbuJsI_e_dtLWCBy8zs7wfw5u3hJxTuKPAB_cpoAGIeYwHpEt5JEIpWXxIugDAQxZJ0SEnzi39k4KEY9LhTArGZL9LZuO1wVWuApebj0KHShdFkJvaYjs1BdqgmgZOm1YPmk3FYD55nYeo6vxLBwZNWeWVrmt9So4yLJw-2_UeeX-YvI2m4ezl8Wk0nIVKRLIOB1wDKEkBIiYUUsYzlnLKlYRMSqolRmkmMfZ2B4ss6lPJkOqUI49TrWLkPXKz3VvZ8rPRrk5WuWv9otFl4xImqPCngpAevf6DLsvGGu_OU4xDLIVvPXK7pZQtnbM6Syqbr9CuEwpJm3EyhuHzJuOhhy93K5vFSqd79CdUD1xsAevUXv39JK9f_acnVZrxb8QWigc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423085442</pqid></control><display><type>article</type><title>Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Guo, Jing ; Sesena Rubfiaro, Alberto ; Lai, Yanhao ; Moscoso, Joseph ; Chen, Feng ; Liu, Yuan ; Wang, Xuewen ; He, Jin</creator><creatorcontrib>Guo, Jing ; Sesena Rubfiaro, Alberto ; Lai, Yanhao ; Moscoso, Joseph ; Chen, Feng ; Liu, Yuan ; Wang, Xuewen ; He, Jin</creatorcontrib><description>Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH
i
) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH
i
change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH
e
) change. The HeLa cancer cells can better resist pH
e
change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers.
SERS-active flexible nanopipettes can be used to conduct long-term reliable intracellular single-cell analysis.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/d0an00838a</identifier><identifier>PMID: 32542257</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biomarkers ; Detection ; Gold ; HeLa Cells ; Humans ; Hydrogen-Ion Concentration ; Metal Nanoparticles ; Nanoparticles ; Plasmonics ; Raman spectroscopy ; Response time ; Sensitivity ; Spectrum Analysis, Raman</subject><ispartof>Analyst (London), 2020-07, Vol.145 (14), p.4852-4859</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3</citedby><cites>FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3</cites><orcidid>0000-0002-5323-8309 ; 0000-0002-2633-9809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32542257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Sesena Rubfiaro, Alberto</creatorcontrib><creatorcontrib>Lai, Yanhao</creatorcontrib><creatorcontrib>Moscoso, Joseph</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Wang, Xuewen</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><title>Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH
i
) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH
i
change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH
e
) change. The HeLa cancer cells can better resist pH
e
change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers.
SERS-active flexible nanopipettes can be used to conduct long-term reliable intracellular single-cell analysis.</description><subject>Biomarkers</subject><subject>Detection</subject><subject>Gold</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Metal Nanoparticles</subject><subject>Nanoparticles</subject><subject>Plasmonics</subject><subject>Raman spectroscopy</subject><subject>Response time</subject><subject>Sensitivity</subject><subject>Spectrum Analysis, Raman</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1Lw0AQxRdRbK1evCsRLyJEZ7_S9FjaaoWiYPUcppuNpKSbuJsI_e_dtLWCBy8zs7wfw5u3hJxTuKPAB_cpoAGIeYwHpEt5JEIpWXxIugDAQxZJ0SEnzi39k4KEY9LhTArGZL9LZuO1wVWuApebj0KHShdFkJvaYjs1BdqgmgZOm1YPmk3FYD55nYeo6vxLBwZNWeWVrmt9So4yLJw-2_UeeX-YvI2m4ezl8Wk0nIVKRLIOB1wDKEkBIiYUUsYzlnLKlYRMSqolRmkmMfZ2B4ss6lPJkOqUI49TrWLkPXKz3VvZ8rPRrk5WuWv9otFl4xImqPCngpAevf6DLsvGGu_OU4xDLIVvPXK7pZQtnbM6Syqbr9CuEwpJm3EyhuHzJuOhhy93K5vFSqd79CdUD1xsAevUXv39JK9f_acnVZrxb8QWigc</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Guo, Jing</creator><creator>Sesena Rubfiaro, Alberto</creator><creator>Lai, Yanhao</creator><creator>Moscoso, Joseph</creator><creator>Chen, Feng</creator><creator>Liu, Yuan</creator><creator>Wang, Xuewen</creator><creator>He, Jin</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5323-8309</orcidid><orcidid>https://orcid.org/0000-0002-2633-9809</orcidid></search><sort><creationdate>20200721</creationdate><title>Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette</title><author>Guo, Jing ; Sesena Rubfiaro, Alberto ; Lai, Yanhao ; Moscoso, Joseph ; Chen, Feng ; Liu, Yuan ; Wang, Xuewen ; He, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomarkers</topic><topic>Detection</topic><topic>Gold</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Metal Nanoparticles</topic><topic>Nanoparticles</topic><topic>Plasmonics</topic><topic>Raman spectroscopy</topic><topic>Response time</topic><topic>Sensitivity</topic><topic>Spectrum Analysis, Raman</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Sesena Rubfiaro, Alberto</creatorcontrib><creatorcontrib>Lai, Yanhao</creatorcontrib><creatorcontrib>Moscoso, Joseph</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Wang, Xuewen</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jing</au><au>Sesena Rubfiaro, Alberto</au><au>Lai, Yanhao</au><au>Moscoso, Joseph</au><au>Chen, Feng</au><au>Liu, Yuan</au><au>Wang, Xuewen</au><au>He, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2020-07-21</date><risdate>2020</risdate><volume>145</volume><issue>14</issue><spage>4852</spage><epage>4859</epage><pages>4852-4859</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH
i
) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH
i
change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH
e
) change. The HeLa cancer cells can better resist pH
e
change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers.
SERS-active flexible nanopipettes can be used to conduct long-term reliable intracellular single-cell analysis.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32542257</pmid><doi>10.1039/d0an00838a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5323-8309</orcidid><orcidid>https://orcid.org/0000-0002-2633-9809</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2654 |
ispartof | Analyst (London), 2020-07, Vol.145 (14), p.4852-4859 |
issn | 0003-2654 1364-5528 |
language | eng |
recordid | cdi_pubmed_primary_32542257 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Biomarkers Detection Gold HeLa Cells Humans Hydrogen-Ion Concentration Metal Nanoparticles Nanoparticles Plasmonics Raman spectroscopy Response time Sensitivity Spectrum Analysis, Raman |
title | Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20single-cell%20intracellular%20pH%20sensing%20using%20a%20SERS-active%20nanopipette&rft.jtitle=Analyst%20(London)&rft.au=Guo,%20Jing&rft.date=2020-07-21&rft.volume=145&rft.issue=14&rft.spage=4852&rft.epage=4859&rft.pages=4852-4859&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/d0an00838a&rft_dat=%3Cproquest_pubme%3E2423085442%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2423085442&rft_id=info:pmid/32542257&rfr_iscdi=true |