Loading…

Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette

Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active...

Full description

Saved in:
Bibliographic Details
Published in:Analyst (London) 2020-07, Vol.145 (14), p.4852-4859
Main Authors: Guo, Jing, Sesena Rubfiaro, Alberto, Lai, Yanhao, Moscoso, Joseph, Chen, Feng, Liu, Yuan, Wang, Xuewen, He, Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3
cites cdi_FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3
container_end_page 4859
container_issue 14
container_start_page 4852
container_title Analyst (London)
container_volume 145
creator Guo, Jing
Sesena Rubfiaro, Alberto
Lai, Yanhao
Moscoso, Joseph
Chen, Feng
Liu, Yuan
Wang, Xuewen
He, Jin
description Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH i ) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH i change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH e ) change. The HeLa cancer cells can better resist pH e change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers. SERS-active flexible nanopipettes can be used to conduct long-term reliable intracellular single-cell analysis.
doi_str_mv 10.1039/d0an00838a
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32542257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423085442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3</originalsourceid><addsrcrecordid>eNp9kc1Lw0AQxRdRbK1evCsRLyJEZ7_S9FjaaoWiYPUcppuNpKSbuJsI_e_dtLWCBy8zs7wfw5u3hJxTuKPAB_cpoAGIeYwHpEt5JEIpWXxIugDAQxZJ0SEnzi39k4KEY9LhTArGZL9LZuO1wVWuApebj0KHShdFkJvaYjs1BdqgmgZOm1YPmk3FYD55nYeo6vxLBwZNWeWVrmt9So4yLJw-2_UeeX-YvI2m4ezl8Wk0nIVKRLIOB1wDKEkBIiYUUsYzlnLKlYRMSqolRmkmMfZ2B4ss6lPJkOqUI49TrWLkPXKz3VvZ8rPRrk5WuWv9otFl4xImqPCngpAevf6DLsvGGu_OU4xDLIVvPXK7pZQtnbM6Syqbr9CuEwpJm3EyhuHzJuOhhy93K5vFSqd79CdUD1xsAevUXv39JK9f_acnVZrxb8QWigc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2423085442</pqid></control><display><type>article</type><title>Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Guo, Jing ; Sesena Rubfiaro, Alberto ; Lai, Yanhao ; Moscoso, Joseph ; Chen, Feng ; Liu, Yuan ; Wang, Xuewen ; He, Jin</creator><creatorcontrib>Guo, Jing ; Sesena Rubfiaro, Alberto ; Lai, Yanhao ; Moscoso, Joseph ; Chen, Feng ; Liu, Yuan ; Wang, Xuewen ; He, Jin</creatorcontrib><description>Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH i ) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH i change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH e ) change. The HeLa cancer cells can better resist pH e change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers. SERS-active flexible nanopipettes can be used to conduct long-term reliable intracellular single-cell analysis.</description><identifier>ISSN: 0003-2654</identifier><identifier>EISSN: 1364-5528</identifier><identifier>DOI: 10.1039/d0an00838a</identifier><identifier>PMID: 32542257</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biomarkers ; Detection ; Gold ; HeLa Cells ; Humans ; Hydrogen-Ion Concentration ; Metal Nanoparticles ; Nanoparticles ; Plasmonics ; Raman spectroscopy ; Response time ; Sensitivity ; Spectrum Analysis, Raman</subject><ispartof>Analyst (London), 2020-07, Vol.145 (14), p.4852-4859</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3</citedby><cites>FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3</cites><orcidid>0000-0002-5323-8309 ; 0000-0002-2633-9809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32542257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Sesena Rubfiaro, Alberto</creatorcontrib><creatorcontrib>Lai, Yanhao</creatorcontrib><creatorcontrib>Moscoso, Joseph</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Wang, Xuewen</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><title>Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette</title><title>Analyst (London)</title><addtitle>Analyst</addtitle><description>Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH i ) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH i change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH e ) change. The HeLa cancer cells can better resist pH e change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers. SERS-active flexible nanopipettes can be used to conduct long-term reliable intracellular single-cell analysis.</description><subject>Biomarkers</subject><subject>Detection</subject><subject>Gold</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Metal Nanoparticles</subject><subject>Nanoparticles</subject><subject>Plasmonics</subject><subject>Raman spectroscopy</subject><subject>Response time</subject><subject>Sensitivity</subject><subject>Spectrum Analysis, Raman</subject><issn>0003-2654</issn><issn>1364-5528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1Lw0AQxRdRbK1evCsRLyJEZ7_S9FjaaoWiYPUcppuNpKSbuJsI_e_dtLWCBy8zs7wfw5u3hJxTuKPAB_cpoAGIeYwHpEt5JEIpWXxIugDAQxZJ0SEnzi39k4KEY9LhTArGZL9LZuO1wVWuApebj0KHShdFkJvaYjs1BdqgmgZOm1YPmk3FYD55nYeo6vxLBwZNWeWVrmt9So4yLJw-2_UeeX-YvI2m4ezl8Wk0nIVKRLIOB1wDKEkBIiYUUsYzlnLKlYRMSqolRmkmMfZ2B4ss6lPJkOqUI49TrWLkPXKz3VvZ8rPRrk5WuWv9otFl4xImqPCngpAevf6DLsvGGu_OU4xDLIVvPXK7pZQtnbM6Syqbr9CuEwpJm3EyhuHzJuOhhy93K5vFSqd79CdUD1xsAevUXv39JK9f_acnVZrxb8QWigc</recordid><startdate>20200721</startdate><enddate>20200721</enddate><creator>Guo, Jing</creator><creator>Sesena Rubfiaro, Alberto</creator><creator>Lai, Yanhao</creator><creator>Moscoso, Joseph</creator><creator>Chen, Feng</creator><creator>Liu, Yuan</creator><creator>Wang, Xuewen</creator><creator>He, Jin</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5323-8309</orcidid><orcidid>https://orcid.org/0000-0002-2633-9809</orcidid></search><sort><creationdate>20200721</creationdate><title>Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette</title><author>Guo, Jing ; Sesena Rubfiaro, Alberto ; Lai, Yanhao ; Moscoso, Joseph ; Chen, Feng ; Liu, Yuan ; Wang, Xuewen ; He, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomarkers</topic><topic>Detection</topic><topic>Gold</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Metal Nanoparticles</topic><topic>Nanoparticles</topic><topic>Plasmonics</topic><topic>Raman spectroscopy</topic><topic>Response time</topic><topic>Sensitivity</topic><topic>Spectrum Analysis, Raman</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Sesena Rubfiaro, Alberto</creatorcontrib><creatorcontrib>Lai, Yanhao</creatorcontrib><creatorcontrib>Moscoso, Joseph</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Liu, Yuan</creatorcontrib><creatorcontrib>Wang, Xuewen</creatorcontrib><creatorcontrib>He, Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analyst (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jing</au><au>Sesena Rubfiaro, Alberto</au><au>Lai, Yanhao</au><au>Moscoso, Joseph</au><au>Chen, Feng</au><au>Liu, Yuan</au><au>Wang, Xuewen</au><au>He, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette</atitle><jtitle>Analyst (London)</jtitle><addtitle>Analyst</addtitle><date>2020-07-21</date><risdate>2020</risdate><volume>145</volume><issue>14</issue><spage>4852</spage><epage>4859</epage><pages>4852-4859</pages><issn>0003-2654</issn><eissn>1364-5528</eissn><abstract>Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH i ) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH i change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH e ) change. The HeLa cancer cells can better resist pH e change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers. SERS-active flexible nanopipettes can be used to conduct long-term reliable intracellular single-cell analysis.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32542257</pmid><doi>10.1039/d0an00838a</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5323-8309</orcidid><orcidid>https://orcid.org/0000-0002-2633-9809</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2654
ispartof Analyst (London), 2020-07, Vol.145 (14), p.4852-4859
issn 0003-2654
1364-5528
language eng
recordid cdi_pubmed_primary_32542257
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Biomarkers
Detection
Gold
HeLa Cells
Humans
Hydrogen-Ion Concentration
Metal Nanoparticles
Nanoparticles
Plasmonics
Raman spectroscopy
Response time
Sensitivity
Spectrum Analysis, Raman
title Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20single-cell%20intracellular%20pH%20sensing%20using%20a%20SERS-active%20nanopipette&rft.jtitle=Analyst%20(London)&rft.au=Guo,%20Jing&rft.date=2020-07-21&rft.volume=145&rft.issue=14&rft.spage=4852&rft.epage=4859&rft.pages=4852-4859&rft.issn=0003-2654&rft.eissn=1364-5528&rft_id=info:doi/10.1039/d0an00838a&rft_dat=%3Cproquest_pubme%3E2423085442%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-93e00c5100624ca123f2d313c50f551e5a6df5a80019bf67152a1ed3a38dec8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2423085442&rft_id=info:pmid/32542257&rfr_iscdi=true