Loading…

Driving torsion scans with wavefront propagation

The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2020-06, Vol.152 (24), p.244116-244116
Main Authors: Qiu, Yudong, Smith, Daniel G. A., Stern, Chaya D., Feng, Mudong, Jang, Hyesu, Wang, Lee-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93
cites cdi_FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93
container_end_page 244116
container_issue 24
container_start_page 244116
container_title The Journal of chemical physics
container_volume 152
creator Qiu, Yudong
Smith, Daniel G. A.
Stern, Chaya D.
Feng, Mudong
Jang, Hyesu
Wang, Lee-Ping
description The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.
doi_str_mv 10.1063/5.0009232
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32610969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417158848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93</originalsourceid><addsrcrecordid>eNp90VtLwzAYBuAgipvTC_-AFLxRofNLkx5yI8g8wsAbvQ5pmm4ZW1OTtsN_b-bmPIBeJZCHly_vh9AxhiGGhFzGQwBgEYl2UB9DxsI0YbCL-gARDlkCSQ8dODfzCKcR3Uc9EiUYWML6CG6s7nQ1CRpjnTZV4KSoXLDUzTRYik6V1lRNUFtTi4loPDhEe6WYO3W0OQfo5e72efQQjp_uH0fX41DSlDShojHLQBaUyYwUipWlZJBniYxLhanwl1wSoXIJJIO0ICpnNCcRVjFRVElGBuhqnVu3-UIVUlWNFXNeW70Q9o0bofnPl0pP-cR0PCURMCA-4GwTYM1rq1zDF9pJNZ-LSpnW8Yhilq7qiz09_UVnprWV_95KpTjOMpp5db5W0hrnrCq3w2DgqyAe880evD35Pv1WfhbvwcUaOKmbj2L_TfsTd8Z-QV4XJXkH7UCfEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417158848</pqid></control><display><type>article</type><title>Driving torsion scans with wavefront propagation</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Qiu, Yudong ; Smith, Daniel G. A. ; Stern, Chaya D. ; Feng, Mudong ; Jang, Hyesu ; Wang, Lee-Ping</creator><creatorcontrib>Qiu, Yudong ; Smith, Daniel G. A. ; Stern, Chaya D. ; Feng, Mudong ; Jang, Hyesu ; Wang, Lee-Ping</creatorcontrib><description>The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0009232</identifier><identifier>PMID: 32610969</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Computer networks ; Constraints ; Dihedral angle ; Distributed processing ; Energy conservation ; Open source software ; Parameterization ; Potential energy ; Quantum mechanics ; Recursive methods ; Software packages ; Source code ; Wave fronts ; Wave propagation ; Workflow</subject><ispartof>The Journal of chemical physics, 2020-06, Vol.152 (24), p.244116-244116</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Copyright © 2020 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93</citedby><cites>FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93</cites><orcidid>0000-0001-8626-0900 ; 0000-0002-1697-2918 ; 0000-0003-3072-9946 ; 0000-0001-6200-3993 ; 0000-0003-1686-0454 ; 0000-0003-4345-8356 ; 0000000343458356 ; 0000000186260900 ; 0000000162003993 ; 0000000316860454 ; 0000000330729946 ; 0000000216972918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0009232$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32610969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Yudong</creatorcontrib><creatorcontrib>Smith, Daniel G. A.</creatorcontrib><creatorcontrib>Stern, Chaya D.</creatorcontrib><creatorcontrib>Feng, Mudong</creatorcontrib><creatorcontrib>Jang, Hyesu</creatorcontrib><creatorcontrib>Wang, Lee-Ping</creatorcontrib><title>Driving torsion scans with wavefront propagation</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.</description><subject>Algorithms</subject><subject>Computer networks</subject><subject>Constraints</subject><subject>Dihedral angle</subject><subject>Distributed processing</subject><subject>Energy conservation</subject><subject>Open source software</subject><subject>Parameterization</subject><subject>Potential energy</subject><subject>Quantum mechanics</subject><subject>Recursive methods</subject><subject>Software packages</subject><subject>Source code</subject><subject>Wave fronts</subject><subject>Wave propagation</subject><subject>Workflow</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90VtLwzAYBuAgipvTC_-AFLxRofNLkx5yI8g8wsAbvQ5pmm4ZW1OTtsN_b-bmPIBeJZCHly_vh9AxhiGGhFzGQwBgEYl2UB9DxsI0YbCL-gARDlkCSQ8dODfzCKcR3Uc9EiUYWML6CG6s7nQ1CRpjnTZV4KSoXLDUzTRYik6V1lRNUFtTi4loPDhEe6WYO3W0OQfo5e72efQQjp_uH0fX41DSlDShojHLQBaUyYwUipWlZJBniYxLhanwl1wSoXIJJIO0ICpnNCcRVjFRVElGBuhqnVu3-UIVUlWNFXNeW70Q9o0bofnPl0pP-cR0PCURMCA-4GwTYM1rq1zDF9pJNZ-LSpnW8Yhilq7qiz09_UVnprWV_95KpTjOMpp5db5W0hrnrCq3w2DgqyAe880evD35Pv1WfhbvwcUaOKmbj2L_TfsTd8Z-QV4XJXkH7UCfEQ</recordid><startdate>20200628</startdate><enddate>20200628</enddate><creator>Qiu, Yudong</creator><creator>Smith, Daniel G. A.</creator><creator>Stern, Chaya D.</creator><creator>Feng, Mudong</creator><creator>Jang, Hyesu</creator><creator>Wang, Lee-Ping</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8626-0900</orcidid><orcidid>https://orcid.org/0000-0002-1697-2918</orcidid><orcidid>https://orcid.org/0000-0003-3072-9946</orcidid><orcidid>https://orcid.org/0000-0001-6200-3993</orcidid><orcidid>https://orcid.org/0000-0003-1686-0454</orcidid><orcidid>https://orcid.org/0000-0003-4345-8356</orcidid><orcidid>https://orcid.org/0000000343458356</orcidid><orcidid>https://orcid.org/0000000186260900</orcidid><orcidid>https://orcid.org/0000000162003993</orcidid><orcidid>https://orcid.org/0000000316860454</orcidid><orcidid>https://orcid.org/0000000330729946</orcidid><orcidid>https://orcid.org/0000000216972918</orcidid></search><sort><creationdate>20200628</creationdate><title>Driving torsion scans with wavefront propagation</title><author>Qiu, Yudong ; Smith, Daniel G. A. ; Stern, Chaya D. ; Feng, Mudong ; Jang, Hyesu ; Wang, Lee-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer networks</topic><topic>Constraints</topic><topic>Dihedral angle</topic><topic>Distributed processing</topic><topic>Energy conservation</topic><topic>Open source software</topic><topic>Parameterization</topic><topic>Potential energy</topic><topic>Quantum mechanics</topic><topic>Recursive methods</topic><topic>Software packages</topic><topic>Source code</topic><topic>Wave fronts</topic><topic>Wave propagation</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Yudong</creatorcontrib><creatorcontrib>Smith, Daniel G. A.</creatorcontrib><creatorcontrib>Stern, Chaya D.</creatorcontrib><creatorcontrib>Feng, Mudong</creatorcontrib><creatorcontrib>Jang, Hyesu</creatorcontrib><creatorcontrib>Wang, Lee-Ping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Yudong</au><au>Smith, Daniel G. A.</au><au>Stern, Chaya D.</au><au>Feng, Mudong</au><au>Jang, Hyesu</au><au>Wang, Lee-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driving torsion scans with wavefront propagation</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-06-28</date><risdate>2020</risdate><volume>152</volume><issue>24</issue><spage>244116</spage><epage>244116</epage><pages>244116-244116</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32610969</pmid><doi>10.1063/5.0009232</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8626-0900</orcidid><orcidid>https://orcid.org/0000-0002-1697-2918</orcidid><orcidid>https://orcid.org/0000-0003-3072-9946</orcidid><orcidid>https://orcid.org/0000-0001-6200-3993</orcidid><orcidid>https://orcid.org/0000-0003-1686-0454</orcidid><orcidid>https://orcid.org/0000-0003-4345-8356</orcidid><orcidid>https://orcid.org/0000000343458356</orcidid><orcidid>https://orcid.org/0000000186260900</orcidid><orcidid>https://orcid.org/0000000162003993</orcidid><orcidid>https://orcid.org/0000000316860454</orcidid><orcidid>https://orcid.org/0000000330729946</orcidid><orcidid>https://orcid.org/0000000216972918</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-06, Vol.152 (24), p.244116-244116
issn 0021-9606
1089-7690
language eng
recordid cdi_pubmed_primary_32610969
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Algorithms
Computer networks
Constraints
Dihedral angle
Distributed processing
Energy conservation
Open source software
Parameterization
Potential energy
Quantum mechanics
Recursive methods
Software packages
Source code
Wave fronts
Wave propagation
Workflow
title Driving torsion scans with wavefront propagation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driving%20torsion%20scans%20with%20wavefront%20propagation&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Qiu,%20Yudong&rft.date=2020-06-28&rft.volume=152&rft.issue=24&rft.spage=244116&rft.epage=244116&rft.pages=244116-244116&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0009232&rft_dat=%3Cproquest_pubme%3E2417158848%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417158848&rft_id=info:pmid/32610969&rfr_iscdi=true