Loading…
Driving torsion scans with wavefront propagation
The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field...
Saved in:
Published in: | The Journal of chemical physics 2020-06, Vol.152 (24), p.244116-244116 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93 |
---|---|
cites | cdi_FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93 |
container_end_page | 244116 |
container_issue | 24 |
container_start_page | 244116 |
container_title | The Journal of chemical physics |
container_volume | 152 |
creator | Qiu, Yudong Smith, Daniel G. A. Stern, Chaya D. Feng, Mudong Jang, Hyesu Wang, Lee-Ping |
description | The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes. |
doi_str_mv | 10.1063/5.0009232 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32610969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417158848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93</originalsourceid><addsrcrecordid>eNp90VtLwzAYBuAgipvTC_-AFLxRofNLkx5yI8g8wsAbvQ5pmm4ZW1OTtsN_b-bmPIBeJZCHly_vh9AxhiGGhFzGQwBgEYl2UB9DxsI0YbCL-gARDlkCSQ8dODfzCKcR3Uc9EiUYWML6CG6s7nQ1CRpjnTZV4KSoXLDUzTRYik6V1lRNUFtTi4loPDhEe6WYO3W0OQfo5e72efQQjp_uH0fX41DSlDShojHLQBaUyYwUipWlZJBniYxLhanwl1wSoXIJJIO0ICpnNCcRVjFRVElGBuhqnVu3-UIVUlWNFXNeW70Q9o0bofnPl0pP-cR0PCURMCA-4GwTYM1rq1zDF9pJNZ-LSpnW8Yhilq7qiz09_UVnprWV_95KpTjOMpp5db5W0hrnrCq3w2DgqyAe880evD35Pv1WfhbvwcUaOKmbj2L_TfsTd8Z-QV4XJXkH7UCfEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417158848</pqid></control><display><type>article</type><title>Driving torsion scans with wavefront propagation</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Qiu, Yudong ; Smith, Daniel G. A. ; Stern, Chaya D. ; Feng, Mudong ; Jang, Hyesu ; Wang, Lee-Ping</creator><creatorcontrib>Qiu, Yudong ; Smith, Daniel G. A. ; Stern, Chaya D. ; Feng, Mudong ; Jang, Hyesu ; Wang, Lee-Ping</creatorcontrib><description>The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0009232</identifier><identifier>PMID: 32610969</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Computer networks ; Constraints ; Dihedral angle ; Distributed processing ; Energy conservation ; Open source software ; Parameterization ; Potential energy ; Quantum mechanics ; Recursive methods ; Software packages ; Source code ; Wave fronts ; Wave propagation ; Workflow</subject><ispartof>The Journal of chemical physics, 2020-06, Vol.152 (24), p.244116-244116</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Copyright © 2020 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93</citedby><cites>FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93</cites><orcidid>0000-0001-8626-0900 ; 0000-0002-1697-2918 ; 0000-0003-3072-9946 ; 0000-0001-6200-3993 ; 0000-0003-1686-0454 ; 0000-0003-4345-8356 ; 0000000343458356 ; 0000000186260900 ; 0000000162003993 ; 0000000316860454 ; 0000000330729946 ; 0000000216972918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0009232$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32610969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Yudong</creatorcontrib><creatorcontrib>Smith, Daniel G. A.</creatorcontrib><creatorcontrib>Stern, Chaya D.</creatorcontrib><creatorcontrib>Feng, Mudong</creatorcontrib><creatorcontrib>Jang, Hyesu</creatorcontrib><creatorcontrib>Wang, Lee-Ping</creatorcontrib><title>Driving torsion scans with wavefront propagation</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.</description><subject>Algorithms</subject><subject>Computer networks</subject><subject>Constraints</subject><subject>Dihedral angle</subject><subject>Distributed processing</subject><subject>Energy conservation</subject><subject>Open source software</subject><subject>Parameterization</subject><subject>Potential energy</subject><subject>Quantum mechanics</subject><subject>Recursive methods</subject><subject>Software packages</subject><subject>Source code</subject><subject>Wave fronts</subject><subject>Wave propagation</subject><subject>Workflow</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90VtLwzAYBuAgipvTC_-AFLxRofNLkx5yI8g8wsAbvQ5pmm4ZW1OTtsN_b-bmPIBeJZCHly_vh9AxhiGGhFzGQwBgEYl2UB9DxsI0YbCL-gARDlkCSQ8dODfzCKcR3Uc9EiUYWML6CG6s7nQ1CRpjnTZV4KSoXLDUzTRYik6V1lRNUFtTi4loPDhEe6WYO3W0OQfo5e72efQQjp_uH0fX41DSlDShojHLQBaUyYwUipWlZJBniYxLhanwl1wSoXIJJIO0ICpnNCcRVjFRVElGBuhqnVu3-UIVUlWNFXNeW70Q9o0bofnPl0pP-cR0PCURMCA-4GwTYM1rq1zDF9pJNZ-LSpnW8Yhilq7qiz09_UVnprWV_95KpTjOMpp5db5W0hrnrCq3w2DgqyAe880evD35Pv1WfhbvwcUaOKmbj2L_TfsTd8Z-QV4XJXkH7UCfEQ</recordid><startdate>20200628</startdate><enddate>20200628</enddate><creator>Qiu, Yudong</creator><creator>Smith, Daniel G. A.</creator><creator>Stern, Chaya D.</creator><creator>Feng, Mudong</creator><creator>Jang, Hyesu</creator><creator>Wang, Lee-Ping</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8626-0900</orcidid><orcidid>https://orcid.org/0000-0002-1697-2918</orcidid><orcidid>https://orcid.org/0000-0003-3072-9946</orcidid><orcidid>https://orcid.org/0000-0001-6200-3993</orcidid><orcidid>https://orcid.org/0000-0003-1686-0454</orcidid><orcidid>https://orcid.org/0000-0003-4345-8356</orcidid><orcidid>https://orcid.org/0000000343458356</orcidid><orcidid>https://orcid.org/0000000186260900</orcidid><orcidid>https://orcid.org/0000000162003993</orcidid><orcidid>https://orcid.org/0000000316860454</orcidid><orcidid>https://orcid.org/0000000330729946</orcidid><orcidid>https://orcid.org/0000000216972918</orcidid></search><sort><creationdate>20200628</creationdate><title>Driving torsion scans with wavefront propagation</title><author>Qiu, Yudong ; Smith, Daniel G. A. ; Stern, Chaya D. ; Feng, Mudong ; Jang, Hyesu ; Wang, Lee-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer networks</topic><topic>Constraints</topic><topic>Dihedral angle</topic><topic>Distributed processing</topic><topic>Energy conservation</topic><topic>Open source software</topic><topic>Parameterization</topic><topic>Potential energy</topic><topic>Quantum mechanics</topic><topic>Recursive methods</topic><topic>Software packages</topic><topic>Source code</topic><topic>Wave fronts</topic><topic>Wave propagation</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Yudong</creatorcontrib><creatorcontrib>Smith, Daniel G. A.</creatorcontrib><creatorcontrib>Stern, Chaya D.</creatorcontrib><creatorcontrib>Feng, Mudong</creatorcontrib><creatorcontrib>Jang, Hyesu</creatorcontrib><creatorcontrib>Wang, Lee-Ping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Yudong</au><au>Smith, Daniel G. A.</au><au>Stern, Chaya D.</au><au>Feng, Mudong</au><au>Jang, Hyesu</au><au>Wang, Lee-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driving torsion scans with wavefront propagation</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-06-28</date><risdate>2020</risdate><volume>152</volume><issue>24</issue><spage>244116</spage><epage>244116</epage><pages>244116-244116</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32610969</pmid><doi>10.1063/5.0009232</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8626-0900</orcidid><orcidid>https://orcid.org/0000-0002-1697-2918</orcidid><orcidid>https://orcid.org/0000-0003-3072-9946</orcidid><orcidid>https://orcid.org/0000-0001-6200-3993</orcidid><orcidid>https://orcid.org/0000-0003-1686-0454</orcidid><orcidid>https://orcid.org/0000-0003-4345-8356</orcidid><orcidid>https://orcid.org/0000000343458356</orcidid><orcidid>https://orcid.org/0000000186260900</orcidid><orcidid>https://orcid.org/0000000162003993</orcidid><orcidid>https://orcid.org/0000000316860454</orcidid><orcidid>https://orcid.org/0000000330729946</orcidid><orcidid>https://orcid.org/0000000216972918</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-06, Vol.152 (24), p.244116-244116 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_pubmed_primary_32610969 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Algorithms Computer networks Constraints Dihedral angle Distributed processing Energy conservation Open source software Parameterization Potential energy Quantum mechanics Recursive methods Software packages Source code Wave fronts Wave propagation Workflow |
title | Driving torsion scans with wavefront propagation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driving%20torsion%20scans%20with%20wavefront%20propagation&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Qiu,%20Yudong&rft.date=2020-06-28&rft.volume=152&rft.issue=24&rft.spage=244116&rft.epage=244116&rft.pages=244116-244116&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0009232&rft_dat=%3Cproquest_pubme%3E2417158848%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c473t-e45980cd49c83de9ffc90b86c5fe14a86cbc3aebc03807d3eb94b321e53e4ec93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417158848&rft_id=info:pmid/32610969&rfr_iscdi=true |