Loading…

Use of Longitudinal EEG Measures in Estimating Language Development in Infants With and Without Familial Risk for Autism Spectrum Disorder

Language development in children with autism spectrum disorder (ASD) varies greatly among affected individuals and is a strong predictor of later outcomes. Younger siblings of children with ASD have increased risk of ASD, but also language delay. Identifying neural markers of language outcomes in in...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of language 2020-01, Vol.1 (1), p.33-53
Main Authors: Wilkinson, Carol L., Gabard-Durnam, Laurel J., Kapur, Kush, Tager-Flusberg, Helen, Levin, April R., Nelson, Charles A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c561t-44d713f028758cb1f1a94466bd8b211bc54a4128106897d4d9cc43cf561c23493
cites cdi_FETCH-LOGICAL-c561t-44d713f028758cb1f1a94466bd8b211bc54a4128106897d4d9cc43cf561c23493
container_end_page 53
container_issue 1
container_start_page 33
container_title Neurobiology of language
container_volume 1
creator Wilkinson, Carol L.
Gabard-Durnam, Laurel J.
Kapur, Kush
Tager-Flusberg, Helen
Levin, April R.
Nelson, Charles A.
description Language development in children with autism spectrum disorder (ASD) varies greatly among affected individuals and is a strong predictor of later outcomes. Younger siblings of children with ASD have increased risk of ASD, but also language delay. Identifying neural markers of language outcomes in infant siblings could facilitate earlier intervention and improved outcomes. This study aimed to determine whether electroencephalography (EEG) measures from the first 2 years of life can explain heterogeneity in language development in children at low and high risk for ASD, and whether associations between EEG measures and language development are different depending on ASD risk status or later ASD diagnosis. In this prospective longitudinal study, EEG measures collected between 3 and 24 months were used in a multivariate linear regression model to estimate participants’ 24-month language development. Individual baseline longitudinal EEG measures included (1) the slope of EEG power across 3 to 12 months or 3 to 24 months of life for six canonical frequency bands, (2) the estimated EEG power at 6 months of age for the same frequency bands, and (3) terms representing the interaction between ASD risk status and EEG power measures. Modeled 24-month language scores using EEG data from either the first 2 years (Pearson = 0.70, 95% CI [0.595, 0.783], = 1 × 10 ) or the first year of life (Pearson = 0.66, 95% CI [0.540, 0.761], = 2.5 × 10 ) were highly correlated with observed scores. All models included significant interaction effects of risk on EEG measures, suggesting that EEG-language associations are different depending on risk status, and that different brain mechanisms affect language development in low- versus high-risk infants.
doi_str_mv 10.1162/nol_a_00002
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32656537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f985776511d745d6923082b8d37ecdb1</doaj_id><sourcerecordid>2890850520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-44d713f028758cb1f1a94466bd8b211bc54a4128106897d4d9cc43cf561c23493</originalsourceid><addsrcrecordid>eNptks9rFDEUgAdRbKk9eZeABwVZze_JHCyUdlsXVgS1eAyZJDNNnUnWJLOgf4J_tdndWralueSRfPneS_Kq6iWC7xHi-IMPg1QSloGfVIeYUzSjhIune_FBdZzSzYZgCBNMnlcHBHPGGakPq79XyYLQgWXwvcuTcV4NYD6_BJ-tSlO0CTgP5im7UWXne7BUvp9Ub8G5XdshrEbr8wZZ-E75nMAPl6-B8mYbhCmDCzW6wRXpV5d-gi5EcDpll0bwbWV1jtMIzl0K0dj4onrWqSHZ49v5qLq6mH8_-zRbfrlcnJ0uZ5pxlGeUmhqRDmJRM6Fb1CHVUMp5a0SLEWo1o4oiLBDkoqkNNY3WlOiuHNaY0IYcVYud1wR1I1exXC3-lkE5uV0IsZcqZqcHK7tGsLrmDCFTU2Z4gwkUuBWG1FabFhXXyc61mtrRGl1eI6rhnvT-jnfXsg9rWZMi3Rbz9lYQw6_JpixHl7QdBuVtmJLEFBeSQYwL-voBehOmWP6rUKKBgkGGYaHe7SgdQ0rRdnfFICg3LSP3WqbQr_brv2P_N0gBPu6A0e3lK4o1ckgSWLqMSAwxKm4JG_nHrR4kePPI-cdK-QcWJd0I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890850520</pqid></control><display><type>article</type><title>Use of Longitudinal EEG Measures in Estimating Language Development in Infants With and Without Familial Risk for Autism Spectrum Disorder</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>NCBI_PubMed Central(免费)</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>Linguistics Collection</source><source>Linguistics and Language Behavior Abstracts (LLBA)</source><creator>Wilkinson, Carol L. ; Gabard-Durnam, Laurel J. ; Kapur, Kush ; Tager-Flusberg, Helen ; Levin, April R. ; Nelson, Charles A.</creator><creatorcontrib>Wilkinson, Carol L. ; Gabard-Durnam, Laurel J. ; Kapur, Kush ; Tager-Flusberg, Helen ; Levin, April R. ; Nelson, Charles A.</creatorcontrib><description>Language development in children with autism spectrum disorder (ASD) varies greatly among affected individuals and is a strong predictor of later outcomes. Younger siblings of children with ASD have increased risk of ASD, but also language delay. Identifying neural markers of language outcomes in infant siblings could facilitate earlier intervention and improved outcomes. This study aimed to determine whether electroencephalography (EEG) measures from the first 2 years of life can explain heterogeneity in language development in children at low and high risk for ASD, and whether associations between EEG measures and language development are different depending on ASD risk status or later ASD diagnosis. In this prospective longitudinal study, EEG measures collected between 3 and 24 months were used in a multivariate linear regression model to estimate participants’ 24-month language development. Individual baseline longitudinal EEG measures included (1) the slope of EEG power across 3 to 12 months or 3 to 24 months of life for six canonical frequency bands, (2) the estimated EEG power at 6 months of age for the same frequency bands, and (3) terms representing the interaction between ASD risk status and EEG power measures. Modeled 24-month language scores using EEG data from either the first 2 years (Pearson = 0.70, 95% CI [0.595, 0.783], = 1 × 10 ) or the first year of life (Pearson = 0.66, 95% CI [0.540, 0.761], = 2.5 × 10 ) were highly correlated with observed scores. All models included significant interaction effects of risk on EEG measures, suggesting that EEG-language associations are different depending on risk status, and that different brain mechanisms affect language development in low- versus high-risk infants.</description><identifier>ISSN: 2641-4368</identifier><identifier>EISSN: 2641-4368</identifier><identifier>DOI: 10.1162/nol_a_00002</identifier><identifier>PMID: 32656537</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Autism ; autism spectrum disorder ; biomarker ; Brain ; child ; Children ; Delayed language acquisition ; EEG ; Electroencephalography ; electroencephalography (EEG) ; infant ; Infants ; Language ; language development ; Longitudinal studies ; Native language acquisition ; Risk groups ; Siblings</subject><ispartof>Neurobiology of language, 2020-01, Vol.1 (1), p.33-53</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-44d713f028758cb1f1a94466bd8b211bc54a4128106897d4d9cc43cf561c23493</citedby><cites>FETCH-LOGICAL-c561t-44d713f028758cb1f1a94466bd8b211bc54a4128106897d4d9cc43cf561c23493</cites><orcidid>0000-0002-4564-8068 ; 0000-0003-4192-4720 ; 0000-0001-9022-913X ; 0000-0002-4694-8564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351149/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2890850520?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,12851,21382,21394,25753,27924,27925,31269,33611,33612,33911,33912,37012,37013,43733,43896,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32656537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilkinson, Carol L.</creatorcontrib><creatorcontrib>Gabard-Durnam, Laurel J.</creatorcontrib><creatorcontrib>Kapur, Kush</creatorcontrib><creatorcontrib>Tager-Flusberg, Helen</creatorcontrib><creatorcontrib>Levin, April R.</creatorcontrib><creatorcontrib>Nelson, Charles A.</creatorcontrib><title>Use of Longitudinal EEG Measures in Estimating Language Development in Infants With and Without Familial Risk for Autism Spectrum Disorder</title><title>Neurobiology of language</title><addtitle>Neurobiol Lang (Camb)</addtitle><description>Language development in children with autism spectrum disorder (ASD) varies greatly among affected individuals and is a strong predictor of later outcomes. Younger siblings of children with ASD have increased risk of ASD, but also language delay. Identifying neural markers of language outcomes in infant siblings could facilitate earlier intervention and improved outcomes. This study aimed to determine whether electroencephalography (EEG) measures from the first 2 years of life can explain heterogeneity in language development in children at low and high risk for ASD, and whether associations between EEG measures and language development are different depending on ASD risk status or later ASD diagnosis. In this prospective longitudinal study, EEG measures collected between 3 and 24 months were used in a multivariate linear regression model to estimate participants’ 24-month language development. Individual baseline longitudinal EEG measures included (1) the slope of EEG power across 3 to 12 months or 3 to 24 months of life for six canonical frequency bands, (2) the estimated EEG power at 6 months of age for the same frequency bands, and (3) terms representing the interaction between ASD risk status and EEG power measures. Modeled 24-month language scores using EEG data from either the first 2 years (Pearson = 0.70, 95% CI [0.595, 0.783], = 1 × 10 ) or the first year of life (Pearson = 0.66, 95% CI [0.540, 0.761], = 2.5 × 10 ) were highly correlated with observed scores. All models included significant interaction effects of risk on EEG measures, suggesting that EEG-language associations are different depending on risk status, and that different brain mechanisms affect language development in low- versus high-risk infants.</description><subject>Autism</subject><subject>autism spectrum disorder</subject><subject>biomarker</subject><subject>Brain</subject><subject>child</subject><subject>Children</subject><subject>Delayed language acquisition</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>electroencephalography (EEG)</subject><subject>infant</subject><subject>Infants</subject><subject>Language</subject><subject>language development</subject><subject>Longitudinal studies</subject><subject>Native language acquisition</subject><subject>Risk groups</subject><subject>Siblings</subject><issn>2641-4368</issn><issn>2641-4368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7T9</sourceid><sourceid>ALSLI</sourceid><sourceid>CPGLG</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9rFDEUgAdRbKk9eZeABwVZze_JHCyUdlsXVgS1eAyZJDNNnUnWJLOgf4J_tdndWralueSRfPneS_Kq6iWC7xHi-IMPg1QSloGfVIeYUzSjhIune_FBdZzSzYZgCBNMnlcHBHPGGakPq79XyYLQgWXwvcuTcV4NYD6_BJ-tSlO0CTgP5im7UWXne7BUvp9Ub8G5XdshrEbr8wZZ-E75nMAPl6-B8mYbhCmDCzW6wRXpV5d-gi5EcDpll0bwbWV1jtMIzl0K0dj4onrWqSHZ49v5qLq6mH8_-zRbfrlcnJ0uZ5pxlGeUmhqRDmJRM6Fb1CHVUMp5a0SLEWo1o4oiLBDkoqkNNY3WlOiuHNaY0IYcVYud1wR1I1exXC3-lkE5uV0IsZcqZqcHK7tGsLrmDCFTU2Z4gwkUuBWG1FabFhXXyc61mtrRGl1eI6rhnvT-jnfXsg9rWZMi3Rbz9lYQw6_JpixHl7QdBuVtmJLEFBeSQYwL-voBehOmWP6rUKKBgkGGYaHe7SgdQ0rRdnfFICg3LSP3WqbQr_brv2P_N0gBPu6A0e3lK4o1ckgSWLqMSAwxKm4JG_nHrR4kePPI-cdK-QcWJd0I</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wilkinson, Carol L.</creator><creator>Gabard-Durnam, Laurel J.</creator><creator>Kapur, Kush</creator><creator>Tager-Flusberg, Helen</creator><creator>Levin, April R.</creator><creator>Nelson, Charles A.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><general>The MIT Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CPGLG</scope><scope>CRLPW</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4564-8068</orcidid><orcidid>https://orcid.org/0000-0003-4192-4720</orcidid><orcidid>https://orcid.org/0000-0001-9022-913X</orcidid><orcidid>https://orcid.org/0000-0002-4694-8564</orcidid></search><sort><creationdate>20200101</creationdate><title>Use of Longitudinal EEG Measures in Estimating Language Development in Infants With and Without Familial Risk for Autism Spectrum Disorder</title><author>Wilkinson, Carol L. ; Gabard-Durnam, Laurel J. ; Kapur, Kush ; Tager-Flusberg, Helen ; Levin, April R. ; Nelson, Charles A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-44d713f028758cb1f1a94466bd8b211bc54a4128106897d4d9cc43cf561c23493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autism</topic><topic>autism spectrum disorder</topic><topic>biomarker</topic><topic>Brain</topic><topic>child</topic><topic>Children</topic><topic>Delayed language acquisition</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>electroencephalography (EEG)</topic><topic>infant</topic><topic>Infants</topic><topic>Language</topic><topic>language development</topic><topic>Longitudinal studies</topic><topic>Native language acquisition</topic><topic>Risk groups</topic><topic>Siblings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilkinson, Carol L.</creatorcontrib><creatorcontrib>Gabard-Durnam, Laurel J.</creatorcontrib><creatorcontrib>Kapur, Kush</creatorcontrib><creatorcontrib>Tager-Flusberg, Helen</creatorcontrib><creatorcontrib>Levin, April R.</creatorcontrib><creatorcontrib>Nelson, Charles A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Linguistics Collection</collection><collection>Linguistics Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Neurobiology of language</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilkinson, Carol L.</au><au>Gabard-Durnam, Laurel J.</au><au>Kapur, Kush</au><au>Tager-Flusberg, Helen</au><au>Levin, April R.</au><au>Nelson, Charles A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Longitudinal EEG Measures in Estimating Language Development in Infants With and Without Familial Risk for Autism Spectrum Disorder</atitle><jtitle>Neurobiology of language</jtitle><addtitle>Neurobiol Lang (Camb)</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>1</volume><issue>1</issue><spage>33</spage><epage>53</epage><pages>33-53</pages><issn>2641-4368</issn><eissn>2641-4368</eissn><abstract>Language development in children with autism spectrum disorder (ASD) varies greatly among affected individuals and is a strong predictor of later outcomes. Younger siblings of children with ASD have increased risk of ASD, but also language delay. Identifying neural markers of language outcomes in infant siblings could facilitate earlier intervention and improved outcomes. This study aimed to determine whether electroencephalography (EEG) measures from the first 2 years of life can explain heterogeneity in language development in children at low and high risk for ASD, and whether associations between EEG measures and language development are different depending on ASD risk status or later ASD diagnosis. In this prospective longitudinal study, EEG measures collected between 3 and 24 months were used in a multivariate linear regression model to estimate participants’ 24-month language development. Individual baseline longitudinal EEG measures included (1) the slope of EEG power across 3 to 12 months or 3 to 24 months of life for six canonical frequency bands, (2) the estimated EEG power at 6 months of age for the same frequency bands, and (3) terms representing the interaction between ASD risk status and EEG power measures. Modeled 24-month language scores using EEG data from either the first 2 years (Pearson = 0.70, 95% CI [0.595, 0.783], = 1 × 10 ) or the first year of life (Pearson = 0.66, 95% CI [0.540, 0.761], = 2.5 × 10 ) were highly correlated with observed scores. All models included significant interaction effects of risk on EEG measures, suggesting that EEG-language associations are different depending on risk status, and that different brain mechanisms affect language development in low- versus high-risk infants.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>32656537</pmid><doi>10.1162/nol_a_00002</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4564-8068</orcidid><orcidid>https://orcid.org/0000-0003-4192-4720</orcidid><orcidid>https://orcid.org/0000-0001-9022-913X</orcidid><orcidid>https://orcid.org/0000-0002-4694-8564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2641-4368
ispartof Neurobiology of language, 2020-01, Vol.1 (1), p.33-53
issn 2641-4368
2641-4368
language eng
recordid cdi_pubmed_primary_32656537
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); NCBI_PubMed Central(免费); Social Science Premium Collection (Proquest) (PQ_SDU_P3); Linguistics Collection; Linguistics and Language Behavior Abstracts (LLBA)
subjects Autism
autism spectrum disorder
biomarker
Brain
child
Children
Delayed language acquisition
EEG
Electroencephalography
electroencephalography (EEG)
infant
Infants
Language
language development
Longitudinal studies
Native language acquisition
Risk groups
Siblings
title Use of Longitudinal EEG Measures in Estimating Language Development in Infants With and Without Familial Risk for Autism Spectrum Disorder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Longitudinal%20EEG%20Measures%20in%20Estimating%20Language%20Development%20in%20Infants%20With%20and%20Without%20Familial%20Risk%20for%20Autism%20Spectrum%20Disorder&rft.jtitle=Neurobiology%20of%20language&rft.au=Wilkinson,%20Carol%20L.&rft.date=2020-01-01&rft.volume=1&rft.issue=1&rft.spage=33&rft.epage=53&rft.pages=33-53&rft.issn=2641-4368&rft.eissn=2641-4368&rft_id=info:doi/10.1162/nol_a_00002&rft_dat=%3Cproquest_pubme%3E2890850520%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c561t-44d713f028758cb1f1a94466bd8b211bc54a4128106897d4d9cc43cf561c23493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890850520&rft_id=info:pmid/32656537&rfr_iscdi=true