Loading…

Automatic Registration Between Dental Cone-Beam CT and Scanned Surface via Deep Pose Regression Neural Networks and Clustered Similarities

Computerized registration between maxillofacial cone-beam computed tomography (CT) images and a scanned dental model is an essential prerequisite for surgical planning for dental implants or orthognathic surgery. We propose a novel method that performs fully automatic registration between a cone-bea...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2020-12, Vol.39 (12), p.3900-3909
Main Authors: Chung, Minyoung, Lee, Jingyu, Song, Wisoo, Song, Youngchan, Yang, Il-Hyung, Lee, Jeongjin, Shin, Yeong-Gil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-82dd3f22c14a145abffc3613962098a5f047b30a3d7a3d76e46e858c2b81cc423
cites cdi_FETCH-LOGICAL-c347t-82dd3f22c14a145abffc3613962098a5f047b30a3d7a3d76e46e858c2b81cc423
container_end_page 3909
container_issue 12
container_start_page 3900
container_title IEEE transactions on medical imaging
container_volume 39
creator Chung, Minyoung
Lee, Jingyu
Song, Wisoo
Song, Youngchan
Yang, Il-Hyung
Lee, Jeongjin
Shin, Yeong-Gil
description Computerized registration between maxillofacial cone-beam computed tomography (CT) images and a scanned dental model is an essential prerequisite for surgical planning for dental implants or orthognathic surgery. We propose a novel method that performs fully automatic registration between a cone-beam CT image and an optically scanned model. To build a robust and automatic initial registration method, deep pose regression neural networks are applied in a reduced domain (i.e., two-dimensional image). Subsequently, fine registration is performed using optimal clusters. A majority voting system achieves globally optimal transformations while each cluster attempts to optimize local transformation parameters. The coherency of clusters determines their candidacy for the optimal cluster set. The outlying regions in the iso-surface are effectively removed based on the consensus among the optimal clusters. The accuracy of registration is evaluated based on the Euclidean distance of 10 landmarks on a scanned model, which have been annotated by experts in the field. The experiments show that the registration accuracy of the proposed method, measured based on the landmark distance, outperforms the best performing existing method by 33.09%. In addition to achieving high accuracy, our proposed method neither requires human interactions nor priors (e.g., iso-surface extraction). The primary significance of our study is twofold: 1) the employment of lightweight neural networks, which indicates the applicability of neural networks in extracting pose cues that can be easily obtained and 2) the introduction of an optimal cluster-based registration method that can avoid metal artifacts during the matching procedures.
doi_str_mv 10.1109/TMI.2020.3007520
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32746134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9133542</ieee_id><sourcerecordid>2430375862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-82dd3f22c14a145abffc3613962098a5f047b30a3d7a3d76e46e858c2b81cc423</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS1ERaeFPRISssSmmwzXf4mzbMNfpVIQDBK7yOPcIJfEGWyHqq_AU-Mw0y5YWNeSv_PJV4eQ5wzWjEH9evPxcs2Bw1oAVIrDI7JiSumCK_n9MVkBr3QBUPJjchLjDQCTCuon5FjwSpZMyBX5cz6naTTJWfoFf7iYQr5Pnl5gukX09A36ZAbaTB6LCzQjbTbU-I5-tcZ7zHMOvbFIfzuTWdzRz1PERRUwxkV0jXPIguvsm8LP-C_cDHNMGJa4G91ggksO41Ny1Jsh4rPDPCXf3r3dNB-Kq0_vL5vzq8IKWaVC864TPeeWSZP3Mdu-tyIvU5ccam1UD7LaCjCiq5ZToixRK235VjNrJRen5Gzv3YXp14wxtaOLFofBeJzm2HIpQFRKlwv66j_0ZpqDz7_LVFnxWmspMwV7yoYpxoB9uwtuNOGuZdAuPbW5p3bpqT30lCMvD-J5O2L3ELgvJgMv9oBDxIfnmgmh8gp_Abzblpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467298844</pqid></control><display><type>article</type><title>Automatic Registration Between Dental Cone-Beam CT and Scanned Surface via Deep Pose Regression Neural Networks and Clustered Similarities</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chung, Minyoung ; Lee, Jingyu ; Song, Wisoo ; Song, Youngchan ; Yang, Il-Hyung ; Lee, Jeongjin ; Shin, Yeong-Gil</creator><creatorcontrib>Chung, Minyoung ; Lee, Jingyu ; Song, Wisoo ; Song, Youngchan ; Yang, Il-Hyung ; Lee, Jeongjin ; Shin, Yeong-Gil</creatorcontrib><description>Computerized registration between maxillofacial cone-beam computed tomography (CT) images and a scanned dental model is an essential prerequisite for surgical planning for dental implants or orthognathic surgery. We propose a novel method that performs fully automatic registration between a cone-beam CT image and an optically scanned model. To build a robust and automatic initial registration method, deep pose regression neural networks are applied in a reduced domain (i.e., two-dimensional image). Subsequently, fine registration is performed using optimal clusters. A majority voting system achieves globally optimal transformations while each cluster attempts to optimize local transformation parameters. The coherency of clusters determines their candidacy for the optimal cluster set. The outlying regions in the iso-surface are effectively removed based on the consensus among the optimal clusters. The accuracy of registration is evaluated based on the Euclidean distance of 10 landmarks on a scanned model, which have been annotated by experts in the field. The experiments show that the registration accuracy of the proposed method, measured based on the landmark distance, outperforms the best performing existing method by 33.09%. In addition to achieving high accuracy, our proposed method neither requires human interactions nor priors (e.g., iso-surface extraction). The primary significance of our study is twofold: 1) the employment of lightweight neural networks, which indicates the applicability of neural networks in extracting pose cues that can be easily obtained and 2) the introduction of an optimal cluster-based registration method that can avoid metal artifacts during the matching procedures.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.3007520</identifier><identifier>PMID: 32746134</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Clusters ; Computational modeling ; Computed tomography ; CT-model registration ; deep pose regression neural network ; Dental implants ; Dental prosthetics ; Dentistry ; Euclidean geometry ; Maxillofacial ; Medical imaging ; Neural networks ; optimal cluster-based similarity ; Optimization ; Registration ; Robustness (mathematics) ; scanned dental model registration ; Surgery ; Surgical implants ; Three-dimensional displays ; Transformations (mathematics) ; Two dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 2020-12, Vol.39 (12), p.3900-3909</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-82dd3f22c14a145abffc3613962098a5f047b30a3d7a3d76e46e858c2b81cc423</citedby><cites>FETCH-LOGICAL-c347t-82dd3f22c14a145abffc3613962098a5f047b30a3d7a3d76e46e858c2b81cc423</cites><orcidid>0000-0001-6398-4607 ; 0000-0001-9467-5348 ; 0000-0001-7503-3307 ; 0000-0001-9676-271X ; 0000-0001-8614-7772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9133542$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32746134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Minyoung</creatorcontrib><creatorcontrib>Lee, Jingyu</creatorcontrib><creatorcontrib>Song, Wisoo</creatorcontrib><creatorcontrib>Song, Youngchan</creatorcontrib><creatorcontrib>Yang, Il-Hyung</creatorcontrib><creatorcontrib>Lee, Jeongjin</creatorcontrib><creatorcontrib>Shin, Yeong-Gil</creatorcontrib><title>Automatic Registration Between Dental Cone-Beam CT and Scanned Surface via Deep Pose Regression Neural Networks and Clustered Similarities</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Computerized registration between maxillofacial cone-beam computed tomography (CT) images and a scanned dental model is an essential prerequisite for surgical planning for dental implants or orthognathic surgery. We propose a novel method that performs fully automatic registration between a cone-beam CT image and an optically scanned model. To build a robust and automatic initial registration method, deep pose regression neural networks are applied in a reduced domain (i.e., two-dimensional image). Subsequently, fine registration is performed using optimal clusters. A majority voting system achieves globally optimal transformations while each cluster attempts to optimize local transformation parameters. The coherency of clusters determines their candidacy for the optimal cluster set. The outlying regions in the iso-surface are effectively removed based on the consensus among the optimal clusters. The accuracy of registration is evaluated based on the Euclidean distance of 10 landmarks on a scanned model, which have been annotated by experts in the field. The experiments show that the registration accuracy of the proposed method, measured based on the landmark distance, outperforms the best performing existing method by 33.09%. In addition to achieving high accuracy, our proposed method neither requires human interactions nor priors (e.g., iso-surface extraction). The primary significance of our study is twofold: 1) the employment of lightweight neural networks, which indicates the applicability of neural networks in extracting pose cues that can be easily obtained and 2) the introduction of an optimal cluster-based registration method that can avoid metal artifacts during the matching procedures.</description><subject>Accuracy</subject><subject>Clusters</subject><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>CT-model registration</subject><subject>deep pose regression neural network</subject><subject>Dental implants</subject><subject>Dental prosthetics</subject><subject>Dentistry</subject><subject>Euclidean geometry</subject><subject>Maxillofacial</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>optimal cluster-based similarity</subject><subject>Optimization</subject><subject>Registration</subject><subject>Robustness (mathematics)</subject><subject>scanned dental model registration</subject><subject>Surgery</subject><subject>Surgical implants</subject><subject>Three-dimensional displays</subject><subject>Transformations (mathematics)</subject><subject>Two dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1u1DAUhS1ERaeFPRISssSmmwzXf4mzbMNfpVIQDBK7yOPcIJfEGWyHqq_AU-Mw0y5YWNeSv_PJV4eQ5wzWjEH9evPxcs2Bw1oAVIrDI7JiSumCK_n9MVkBr3QBUPJjchLjDQCTCuon5FjwSpZMyBX5cz6naTTJWfoFf7iYQr5Pnl5gukX09A36ZAbaTB6LCzQjbTbU-I5-tcZ7zHMOvbFIfzuTWdzRz1PERRUwxkV0jXPIguvsm8LP-C_cDHNMGJa4G91ggksO41Ny1Jsh4rPDPCXf3r3dNB-Kq0_vL5vzq8IKWaVC864TPeeWSZP3Mdu-tyIvU5ccam1UD7LaCjCiq5ZToixRK235VjNrJRen5Gzv3YXp14wxtaOLFofBeJzm2HIpQFRKlwv66j_0ZpqDz7_LVFnxWmspMwV7yoYpxoB9uwtuNOGuZdAuPbW5p3bpqT30lCMvD-J5O2L3ELgvJgMv9oBDxIfnmgmh8gp_Abzblpo</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Chung, Minyoung</creator><creator>Lee, Jingyu</creator><creator>Song, Wisoo</creator><creator>Song, Youngchan</creator><creator>Yang, Il-Hyung</creator><creator>Lee, Jeongjin</creator><creator>Shin, Yeong-Gil</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6398-4607</orcidid><orcidid>https://orcid.org/0000-0001-9467-5348</orcidid><orcidid>https://orcid.org/0000-0001-7503-3307</orcidid><orcidid>https://orcid.org/0000-0001-9676-271X</orcidid><orcidid>https://orcid.org/0000-0001-8614-7772</orcidid></search><sort><creationdate>20201201</creationdate><title>Automatic Registration Between Dental Cone-Beam CT and Scanned Surface via Deep Pose Regression Neural Networks and Clustered Similarities</title><author>Chung, Minyoung ; Lee, Jingyu ; Song, Wisoo ; Song, Youngchan ; Yang, Il-Hyung ; Lee, Jeongjin ; Shin, Yeong-Gil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-82dd3f22c14a145abffc3613962098a5f047b30a3d7a3d76e46e858c2b81cc423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Clusters</topic><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>CT-model registration</topic><topic>deep pose regression neural network</topic><topic>Dental implants</topic><topic>Dental prosthetics</topic><topic>Dentistry</topic><topic>Euclidean geometry</topic><topic>Maxillofacial</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>optimal cluster-based similarity</topic><topic>Optimization</topic><topic>Registration</topic><topic>Robustness (mathematics)</topic><topic>scanned dental model registration</topic><topic>Surgery</topic><topic>Surgical implants</topic><topic>Three-dimensional displays</topic><topic>Transformations (mathematics)</topic><topic>Two dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Chung, Minyoung</creatorcontrib><creatorcontrib>Lee, Jingyu</creatorcontrib><creatorcontrib>Song, Wisoo</creatorcontrib><creatorcontrib>Song, Youngchan</creatorcontrib><creatorcontrib>Yang, Il-Hyung</creatorcontrib><creatorcontrib>Lee, Jeongjin</creatorcontrib><creatorcontrib>Shin, Yeong-Gil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Minyoung</au><au>Lee, Jingyu</au><au>Song, Wisoo</au><au>Song, Youngchan</au><au>Yang, Il-Hyung</au><au>Lee, Jeongjin</au><au>Shin, Yeong-Gil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Registration Between Dental Cone-Beam CT and Scanned Surface via Deep Pose Regression Neural Networks and Clustered Similarities</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>39</volume><issue>12</issue><spage>3900</spage><epage>3909</epage><pages>3900-3909</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Computerized registration between maxillofacial cone-beam computed tomography (CT) images and a scanned dental model is an essential prerequisite for surgical planning for dental implants or orthognathic surgery. We propose a novel method that performs fully automatic registration between a cone-beam CT image and an optically scanned model. To build a robust and automatic initial registration method, deep pose regression neural networks are applied in a reduced domain (i.e., two-dimensional image). Subsequently, fine registration is performed using optimal clusters. A majority voting system achieves globally optimal transformations while each cluster attempts to optimize local transformation parameters. The coherency of clusters determines their candidacy for the optimal cluster set. The outlying regions in the iso-surface are effectively removed based on the consensus among the optimal clusters. The accuracy of registration is evaluated based on the Euclidean distance of 10 landmarks on a scanned model, which have been annotated by experts in the field. The experiments show that the registration accuracy of the proposed method, measured based on the landmark distance, outperforms the best performing existing method by 33.09%. In addition to achieving high accuracy, our proposed method neither requires human interactions nor priors (e.g., iso-surface extraction). The primary significance of our study is twofold: 1) the employment of lightweight neural networks, which indicates the applicability of neural networks in extracting pose cues that can be easily obtained and 2) the introduction of an optimal cluster-based registration method that can avoid metal artifacts during the matching procedures.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32746134</pmid><doi>10.1109/TMI.2020.3007520</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6398-4607</orcidid><orcidid>https://orcid.org/0000-0001-9467-5348</orcidid><orcidid>https://orcid.org/0000-0001-7503-3307</orcidid><orcidid>https://orcid.org/0000-0001-9676-271X</orcidid><orcidid>https://orcid.org/0000-0001-8614-7772</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2020-12, Vol.39 (12), p.3900-3909
issn 0278-0062
1558-254X
language eng
recordid cdi_pubmed_primary_32746134
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Clusters
Computational modeling
Computed tomography
CT-model registration
deep pose regression neural network
Dental implants
Dental prosthetics
Dentistry
Euclidean geometry
Maxillofacial
Medical imaging
Neural networks
optimal cluster-based similarity
Optimization
Registration
Robustness (mathematics)
scanned dental model registration
Surgery
Surgical implants
Three-dimensional displays
Transformations (mathematics)
Two dimensional displays
title Automatic Registration Between Dental Cone-Beam CT and Scanned Surface via Deep Pose Regression Neural Networks and Clustered Similarities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Registration%20Between%20Dental%20Cone-Beam%20CT%20and%20Scanned%20Surface%20via%20Deep%20Pose%20Regression%20Neural%20Networks%20and%20Clustered%20Similarities&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Chung,%20Minyoung&rft.date=2020-12-01&rft.volume=39&rft.issue=12&rft.spage=3900&rft.epage=3909&rft.pages=3900-3909&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.3007520&rft_dat=%3Cproquest_pubme%3E2430375862%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-82dd3f22c14a145abffc3613962098a5f047b30a3d7a3d76e46e858c2b81cc423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2467298844&rft_id=info:pmid/32746134&rft_ieee_id=9133542&rfr_iscdi=true