Loading…
Salacia mulbarica leaf extract mediated synthesis of silver nanoparticles for antibacterial and ct-DNA damage via releasing of reactive oxygen species
In this examination, we researched the advantages of DNA fragmentation and metallic nanoparticles well-appointed with biomolecules. A novel interpretation of DNA damage by Silver Nano-Clusters (AgNCs) which were developed by the utilization of green synthesis method was demonstrated. The green synth...
Saved in:
Published in: | IET nanobiotechnology 2020-08, Vol.14 (6), p.485-490 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this examination, we researched the advantages of DNA fragmentation and metallic nanoparticles well-appointed with biomolecules. A novel interpretation of DNA damage by Silver Nano-Clusters (AgNCs) which were developed by the utilization of green synthesis method was demonstrated. The green synthesis of AgNCs was accomplished by utilizing the leaf extract of Salacia mulbarica (SM). The preparation of SM-AgNCs was developed by estimating surface plasmon resonance peak around 449 nm by using a UV–Visible spectrophotometer. The effect of phytochemicals in SM leaf extract on the development of stable SM-AgNCs was confirmed by FTIR spectroscopy. The size of the fabricated SM-AgNCs was estimated by dynamic light scattering and zeta-sizer analysis and the morphology of the SM-AgNCs was examined by transmission electron microscopy. The presence of clusters of Ag particles in the prepared SM-AgNCs was recognized by energy dispersion X-ray analysis. The results show that saponins, phytosterols, and phenolic compounds present in plant extract may play a great part in developing the SM-AgNCs in their specialized particles. The succeeded SM-AgNCs shows incredible anti-bacterial action towards Escherichia coli and Bacillus subtilis. In-light of the antibacterial study, these SM-AgNCs were analyzed with calf thymus-DNA and found significant damage to the strand of thymus-DNA. |
---|---|
ISSN: | 1751-8741 1751-875X 1751-875X |
DOI: | 10.1049/iet-nbt.2020.0001 |