Loading…
SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB
Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2021-04, Vol.25 (4), p.1305-1314 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13 |
container_end_page | 1314 |
container_issue | 4 |
container_start_page | 1305 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 25 |
creator | Piriyajitakonkij, Maytus Warin, Patchanon Lakhan, Payongkit Leelaarporn, Pitshaporn Kumchaiseemak, Nakorn Suwajanakorn, Supasorn Pianpanit, Theerasarn Niparnan, Nattee Mukhopadhyay, Subhas Chandra Wilaiprasitporn, Theerawit |
description | Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of 73.7 \pm 0.8 \% significantly outperformed the mean accuracy of 59.9 \pm 0.7 \% obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications. |
doi_str_mv | 10.1109/JBHI.2020.3025900 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32960771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204373</ieee_id><sourcerecordid>2510432528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13</originalsourceid><addsrcrecordid>eNpdkEtLxDAQgIMoruj-ABGk4MVL12TStIk3FZ-sD3RXjyFtp1LptmvSIv57U7vrwVxmmHzz4CNkn9EJY1Sd3J3f3E6AAp1wCkJRukF2gMUyBKByc50zFY3I2LkP6p_0JRVvkxEHFdMkYTtk_lIhLp8ahw_Yngb3XdWW4WuJX8EUja3L-j0oGhv8UoHH2s6aKphZU7uyLZs6eMasea-HfO56fv52vke2ClM5HK_iLplfXc4ubsLp4_Xtxdk0zCIm2pApabIipkUey5xxBlJIHwRLDVcZZCLmhYhYnArgcZbLVCUJYE4lGJGKlPFdcjzMXdrms0PX6kXpMqwqU2PTOQ1RJCKQkaQePfqHfjSdrf11GgSjEQcB0lNsoDLbOGex0EtbLoz91ozqXrvuteteu15p9z2Hq8ldusD8r2Mt2QMHA1Ai4t-3Ar804fwHQwmDrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510432528</pqid></control><display><type>article</type><title>SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB</title><source>IEEE Xplore (Online service)</source><creator>Piriyajitakonkij, Maytus ; Warin, Patchanon ; Lakhan, Payongkit ; Leelaarporn, Pitshaporn ; Kumchaiseemak, Nakorn ; Suwajanakorn, Supasorn ; Pianpanit, Theerasarn ; Niparnan, Nattee ; Mukhopadhyay, Subhas Chandra ; Wilaiprasitporn, Theerawit</creator><creatorcontrib>Piriyajitakonkij, Maytus ; Warin, Patchanon ; Lakhan, Payongkit ; Leelaarporn, Pitshaporn ; Kumchaiseemak, Nakorn ; Suwajanakorn, Supasorn ; Pianpanit, Theerasarn ; Niparnan, Nattee ; Mukhopadhyay, Subhas Chandra ; Wilaiprasitporn, Theerawit</creatorcontrib><description><![CDATA[Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of <inline-formula><tex-math notation="LaTeX">73.7 \pm 0.8 \%</tex-math></inline-formula> significantly outperformed the mean accuracy of <inline-formula><tex-math notation="LaTeX">59.9 \pm 0.7 \%</tex-math></inline-formula> obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications.]]></description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2020.3025900</identifier><identifier>PMID: 32960771</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Biomedical monitoring ; Classification ; contactless sensing ; Convolution ; Data augmentation ; Deep learning ; Doppler radar ; Heart rate ; Human activity recognition ; Learning ; Monitoring ; Moving object recognition ; Neural networks ; Posture ; Sleep ; Sleep disorders ; Sleep monitoring ; sleep posture ; Time series ; Ultra wideband radar ; Ultrawideband radar ; UWB radar</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-04, Vol.25 (4), p.1305-1314</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13</citedby><cites>FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13</cites><orcidid>0000-0003-2974-8699 ; 0000-0003-4941-4354 ; 0000-0002-8600-5907 ; 0000-0003-2226-654X ; 0000-0001-8755-875X ; 0000-0003-2615-4131 ; 0000-0001-9520-2761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32960771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piriyajitakonkij, Maytus</creatorcontrib><creatorcontrib>Warin, Patchanon</creatorcontrib><creatorcontrib>Lakhan, Payongkit</creatorcontrib><creatorcontrib>Leelaarporn, Pitshaporn</creatorcontrib><creatorcontrib>Kumchaiseemak, Nakorn</creatorcontrib><creatorcontrib>Suwajanakorn, Supasorn</creatorcontrib><creatorcontrib>Pianpanit, Theerasarn</creatorcontrib><creatorcontrib>Niparnan, Nattee</creatorcontrib><creatorcontrib>Mukhopadhyay, Subhas Chandra</creatorcontrib><creatorcontrib>Wilaiprasitporn, Theerawit</creatorcontrib><title>SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description><![CDATA[Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of <inline-formula><tex-math notation="LaTeX">73.7 \pm 0.8 \%</tex-math></inline-formula> significantly outperformed the mean accuracy of <inline-formula><tex-math notation="LaTeX">59.9 \pm 0.7 \%</tex-math></inline-formula> obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications.]]></description><subject>Artificial neural networks</subject><subject>Biomedical monitoring</subject><subject>Classification</subject><subject>contactless sensing</subject><subject>Convolution</subject><subject>Data augmentation</subject><subject>Deep learning</subject><subject>Doppler radar</subject><subject>Heart rate</subject><subject>Human activity recognition</subject><subject>Learning</subject><subject>Monitoring</subject><subject>Moving object recognition</subject><subject>Neural networks</subject><subject>Posture</subject><subject>Sleep</subject><subject>Sleep disorders</subject><subject>Sleep monitoring</subject><subject>sleep posture</subject><subject>Time series</subject><subject>Ultra wideband radar</subject><subject>Ultrawideband radar</subject><subject>UWB radar</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLxDAQgIMoruj-ABGk4MVL12TStIk3FZ-sD3RXjyFtp1LptmvSIv57U7vrwVxmmHzz4CNkn9EJY1Sd3J3f3E6AAp1wCkJRukF2gMUyBKByc50zFY3I2LkP6p_0JRVvkxEHFdMkYTtk_lIhLp8ahw_Yngb3XdWW4WuJX8EUja3L-j0oGhv8UoHH2s6aKphZU7uyLZs6eMasea-HfO56fv52vke2ClM5HK_iLplfXc4ubsLp4_Xtxdk0zCIm2pApabIipkUey5xxBlJIHwRLDVcZZCLmhYhYnArgcZbLVCUJYE4lGJGKlPFdcjzMXdrms0PX6kXpMqwqU2PTOQ1RJCKQkaQePfqHfjSdrf11GgSjEQcB0lNsoDLbOGex0EtbLoz91ozqXrvuteteu15p9z2Hq8ldusD8r2Mt2QMHA1Ai4t-3Ar804fwHQwmDrA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Piriyajitakonkij, Maytus</creator><creator>Warin, Patchanon</creator><creator>Lakhan, Payongkit</creator><creator>Leelaarporn, Pitshaporn</creator><creator>Kumchaiseemak, Nakorn</creator><creator>Suwajanakorn, Supasorn</creator><creator>Pianpanit, Theerasarn</creator><creator>Niparnan, Nattee</creator><creator>Mukhopadhyay, Subhas Chandra</creator><creator>Wilaiprasitporn, Theerawit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2974-8699</orcidid><orcidid>https://orcid.org/0000-0003-4941-4354</orcidid><orcidid>https://orcid.org/0000-0002-8600-5907</orcidid><orcidid>https://orcid.org/0000-0003-2226-654X</orcidid><orcidid>https://orcid.org/0000-0001-8755-875X</orcidid><orcidid>https://orcid.org/0000-0003-2615-4131</orcidid><orcidid>https://orcid.org/0000-0001-9520-2761</orcidid></search><sort><creationdate>20210401</creationdate><title>SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB</title><author>Piriyajitakonkij, Maytus ; Warin, Patchanon ; Lakhan, Payongkit ; Leelaarporn, Pitshaporn ; Kumchaiseemak, Nakorn ; Suwajanakorn, Supasorn ; Pianpanit, Theerasarn ; Niparnan, Nattee ; Mukhopadhyay, Subhas Chandra ; Wilaiprasitporn, Theerawit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Biomedical monitoring</topic><topic>Classification</topic><topic>contactless sensing</topic><topic>Convolution</topic><topic>Data augmentation</topic><topic>Deep learning</topic><topic>Doppler radar</topic><topic>Heart rate</topic><topic>Human activity recognition</topic><topic>Learning</topic><topic>Monitoring</topic><topic>Moving object recognition</topic><topic>Neural networks</topic><topic>Posture</topic><topic>Sleep</topic><topic>Sleep disorders</topic><topic>Sleep monitoring</topic><topic>sleep posture</topic><topic>Time series</topic><topic>Ultra wideband radar</topic><topic>Ultrawideband radar</topic><topic>UWB radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piriyajitakonkij, Maytus</creatorcontrib><creatorcontrib>Warin, Patchanon</creatorcontrib><creatorcontrib>Lakhan, Payongkit</creatorcontrib><creatorcontrib>Leelaarporn, Pitshaporn</creatorcontrib><creatorcontrib>Kumchaiseemak, Nakorn</creatorcontrib><creatorcontrib>Suwajanakorn, Supasorn</creatorcontrib><creatorcontrib>Pianpanit, Theerasarn</creatorcontrib><creatorcontrib>Niparnan, Nattee</creatorcontrib><creatorcontrib>Mukhopadhyay, Subhas Chandra</creatorcontrib><creatorcontrib>Wilaiprasitporn, Theerawit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piriyajitakonkij, Maytus</au><au>Warin, Patchanon</au><au>Lakhan, Payongkit</au><au>Leelaarporn, Pitshaporn</au><au>Kumchaiseemak, Nakorn</au><au>Suwajanakorn, Supasorn</au><au>Pianpanit, Theerasarn</au><au>Niparnan, Nattee</au><au>Mukhopadhyay, Subhas Chandra</au><au>Wilaiprasitporn, Theerawit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>25</volume><issue>4</issue><spage>1305</spage><epage>1314</epage><pages>1305-1314</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract><![CDATA[Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of <inline-formula><tex-math notation="LaTeX">73.7 \pm 0.8 \%</tex-math></inline-formula> significantly outperformed the mean accuracy of <inline-formula><tex-math notation="LaTeX">59.9 \pm 0.7 \%</tex-math></inline-formula> obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>32960771</pmid><doi>10.1109/JBHI.2020.3025900</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2974-8699</orcidid><orcidid>https://orcid.org/0000-0003-4941-4354</orcidid><orcidid>https://orcid.org/0000-0002-8600-5907</orcidid><orcidid>https://orcid.org/0000-0003-2226-654X</orcidid><orcidid>https://orcid.org/0000-0001-8755-875X</orcidid><orcidid>https://orcid.org/0000-0003-2615-4131</orcidid><orcidid>https://orcid.org/0000-0001-9520-2761</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2021-04, Vol.25 (4), p.1305-1314 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_32960771 |
source | IEEE Xplore (Online service) |
subjects | Artificial neural networks Biomedical monitoring Classification contactless sensing Convolution Data augmentation Deep learning Doppler radar Heart rate Human activity recognition Learning Monitoring Moving object recognition Neural networks Posture Sleep Sleep disorders Sleep monitoring sleep posture Time series Ultra wideband radar Ultrawideband radar UWB radar |
title | SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SleepPoseNet:%20Multi-View%20Learning%20for%20Sleep%20Postural%20Transition%20Recognition%20Using%20UWB&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Piriyajitakonkij,%20Maytus&rft.date=2021-04-01&rft.volume=25&rft.issue=4&rft.spage=1305&rft.epage=1314&rft.pages=1305-1314&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2020.3025900&rft_dat=%3Cproquest_pubme%3E2510432528%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2510432528&rft_id=info:pmid/32960771&rft_ieee_id=9204373&rfr_iscdi=true |