Loading…

SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB

Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2021-04, Vol.25 (4), p.1305-1314
Main Authors: Piriyajitakonkij, Maytus, Warin, Patchanon, Lakhan, Payongkit, Leelaarporn, Pitshaporn, Kumchaiseemak, Nakorn, Suwajanakorn, Supasorn, Pianpanit, Theerasarn, Niparnan, Nattee, Mukhopadhyay, Subhas Chandra, Wilaiprasitporn, Theerawit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13
cites cdi_FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13
container_end_page 1314
container_issue 4
container_start_page 1305
container_title IEEE journal of biomedical and health informatics
container_volume 25
creator Piriyajitakonkij, Maytus
Warin, Patchanon
Lakhan, Payongkit
Leelaarporn, Pitshaporn
Kumchaiseemak, Nakorn
Suwajanakorn, Supasorn
Pianpanit, Theerasarn
Niparnan, Nattee
Mukhopadhyay, Subhas Chandra
Wilaiprasitporn, Theerawit
description Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of 73.7 \pm 0.8 \% significantly outperformed the mean accuracy of 59.9 \pm 0.7 \% obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications.
doi_str_mv 10.1109/JBHI.2020.3025900
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_32960771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9204373</ieee_id><sourcerecordid>2510432528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13</originalsourceid><addsrcrecordid>eNpdkEtLxDAQgIMoruj-ABGk4MVL12TStIk3FZ-sD3RXjyFtp1LptmvSIv57U7vrwVxmmHzz4CNkn9EJY1Sd3J3f3E6AAp1wCkJRukF2gMUyBKByc50zFY3I2LkP6p_0JRVvkxEHFdMkYTtk_lIhLp8ahw_Yngb3XdWW4WuJX8EUja3L-j0oGhv8UoHH2s6aKphZU7uyLZs6eMasea-HfO56fv52vke2ClM5HK_iLplfXc4ubsLp4_Xtxdk0zCIm2pApabIipkUey5xxBlJIHwRLDVcZZCLmhYhYnArgcZbLVCUJYE4lGJGKlPFdcjzMXdrms0PX6kXpMqwqU2PTOQ1RJCKQkaQePfqHfjSdrf11GgSjEQcB0lNsoDLbOGex0EtbLoz91ozqXrvuteteu15p9z2Hq8ldusD8r2Mt2QMHA1Ai4t-3Ar804fwHQwmDrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510432528</pqid></control><display><type>article</type><title>SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB</title><source>IEEE Xplore (Online service)</source><creator>Piriyajitakonkij, Maytus ; Warin, Patchanon ; Lakhan, Payongkit ; Leelaarporn, Pitshaporn ; Kumchaiseemak, Nakorn ; Suwajanakorn, Supasorn ; Pianpanit, Theerasarn ; Niparnan, Nattee ; Mukhopadhyay, Subhas Chandra ; Wilaiprasitporn, Theerawit</creator><creatorcontrib>Piriyajitakonkij, Maytus ; Warin, Patchanon ; Lakhan, Payongkit ; Leelaarporn, Pitshaporn ; Kumchaiseemak, Nakorn ; Suwajanakorn, Supasorn ; Pianpanit, Theerasarn ; Niparnan, Nattee ; Mukhopadhyay, Subhas Chandra ; Wilaiprasitporn, Theerawit</creatorcontrib><description><![CDATA[Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of <inline-formula><tex-math notation="LaTeX">73.7 \pm 0.8 \%</tex-math></inline-formula> significantly outperformed the mean accuracy of <inline-formula><tex-math notation="LaTeX">59.9 \pm 0.7 \%</tex-math></inline-formula> obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications.]]></description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2020.3025900</identifier><identifier>PMID: 32960771</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Biomedical monitoring ; Classification ; contactless sensing ; Convolution ; Data augmentation ; Deep learning ; Doppler radar ; Heart rate ; Human activity recognition ; Learning ; Monitoring ; Moving object recognition ; Neural networks ; Posture ; Sleep ; Sleep disorders ; Sleep monitoring ; sleep posture ; Time series ; Ultra wideband radar ; Ultrawideband radar ; UWB radar</subject><ispartof>IEEE journal of biomedical and health informatics, 2021-04, Vol.25 (4), p.1305-1314</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13</citedby><cites>FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13</cites><orcidid>0000-0003-2974-8699 ; 0000-0003-4941-4354 ; 0000-0002-8600-5907 ; 0000-0003-2226-654X ; 0000-0001-8755-875X ; 0000-0003-2615-4131 ; 0000-0001-9520-2761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9204373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,54783</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32960771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piriyajitakonkij, Maytus</creatorcontrib><creatorcontrib>Warin, Patchanon</creatorcontrib><creatorcontrib>Lakhan, Payongkit</creatorcontrib><creatorcontrib>Leelaarporn, Pitshaporn</creatorcontrib><creatorcontrib>Kumchaiseemak, Nakorn</creatorcontrib><creatorcontrib>Suwajanakorn, Supasorn</creatorcontrib><creatorcontrib>Pianpanit, Theerasarn</creatorcontrib><creatorcontrib>Niparnan, Nattee</creatorcontrib><creatorcontrib>Mukhopadhyay, Subhas Chandra</creatorcontrib><creatorcontrib>Wilaiprasitporn, Theerawit</creatorcontrib><title>SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description><![CDATA[Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of <inline-formula><tex-math notation="LaTeX">73.7 \pm 0.8 \%</tex-math></inline-formula> significantly outperformed the mean accuracy of <inline-formula><tex-math notation="LaTeX">59.9 \pm 0.7 \%</tex-math></inline-formula> obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications.]]></description><subject>Artificial neural networks</subject><subject>Biomedical monitoring</subject><subject>Classification</subject><subject>contactless sensing</subject><subject>Convolution</subject><subject>Data augmentation</subject><subject>Deep learning</subject><subject>Doppler radar</subject><subject>Heart rate</subject><subject>Human activity recognition</subject><subject>Learning</subject><subject>Monitoring</subject><subject>Moving object recognition</subject><subject>Neural networks</subject><subject>Posture</subject><subject>Sleep</subject><subject>Sleep disorders</subject><subject>Sleep monitoring</subject><subject>sleep posture</subject><subject>Time series</subject><subject>Ultra wideband radar</subject><subject>Ultrawideband radar</subject><subject>UWB radar</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLxDAQgIMoruj-ABGk4MVL12TStIk3FZ-sD3RXjyFtp1LptmvSIv57U7vrwVxmmHzz4CNkn9EJY1Sd3J3f3E6AAp1wCkJRukF2gMUyBKByc50zFY3I2LkP6p_0JRVvkxEHFdMkYTtk_lIhLp8ahw_Yngb3XdWW4WuJX8EUja3L-j0oGhv8UoHH2s6aKphZU7uyLZs6eMasea-HfO56fv52vke2ClM5HK_iLplfXc4ubsLp4_Xtxdk0zCIm2pApabIipkUey5xxBlJIHwRLDVcZZCLmhYhYnArgcZbLVCUJYE4lGJGKlPFdcjzMXdrms0PX6kXpMqwqU2PTOQ1RJCKQkaQePfqHfjSdrf11GgSjEQcB0lNsoDLbOGex0EtbLoz91ozqXrvuteteu15p9z2Hq8ldusD8r2Mt2QMHA1Ai4t-3Ar804fwHQwmDrA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Piriyajitakonkij, Maytus</creator><creator>Warin, Patchanon</creator><creator>Lakhan, Payongkit</creator><creator>Leelaarporn, Pitshaporn</creator><creator>Kumchaiseemak, Nakorn</creator><creator>Suwajanakorn, Supasorn</creator><creator>Pianpanit, Theerasarn</creator><creator>Niparnan, Nattee</creator><creator>Mukhopadhyay, Subhas Chandra</creator><creator>Wilaiprasitporn, Theerawit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2974-8699</orcidid><orcidid>https://orcid.org/0000-0003-4941-4354</orcidid><orcidid>https://orcid.org/0000-0002-8600-5907</orcidid><orcidid>https://orcid.org/0000-0003-2226-654X</orcidid><orcidid>https://orcid.org/0000-0001-8755-875X</orcidid><orcidid>https://orcid.org/0000-0003-2615-4131</orcidid><orcidid>https://orcid.org/0000-0001-9520-2761</orcidid></search><sort><creationdate>20210401</creationdate><title>SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB</title><author>Piriyajitakonkij, Maytus ; Warin, Patchanon ; Lakhan, Payongkit ; Leelaarporn, Pitshaporn ; Kumchaiseemak, Nakorn ; Suwajanakorn, Supasorn ; Pianpanit, Theerasarn ; Niparnan, Nattee ; Mukhopadhyay, Subhas Chandra ; Wilaiprasitporn, Theerawit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Biomedical monitoring</topic><topic>Classification</topic><topic>contactless sensing</topic><topic>Convolution</topic><topic>Data augmentation</topic><topic>Deep learning</topic><topic>Doppler radar</topic><topic>Heart rate</topic><topic>Human activity recognition</topic><topic>Learning</topic><topic>Monitoring</topic><topic>Moving object recognition</topic><topic>Neural networks</topic><topic>Posture</topic><topic>Sleep</topic><topic>Sleep disorders</topic><topic>Sleep monitoring</topic><topic>sleep posture</topic><topic>Time series</topic><topic>Ultra wideband radar</topic><topic>Ultrawideband radar</topic><topic>UWB radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piriyajitakonkij, Maytus</creatorcontrib><creatorcontrib>Warin, Patchanon</creatorcontrib><creatorcontrib>Lakhan, Payongkit</creatorcontrib><creatorcontrib>Leelaarporn, Pitshaporn</creatorcontrib><creatorcontrib>Kumchaiseemak, Nakorn</creatorcontrib><creatorcontrib>Suwajanakorn, Supasorn</creatorcontrib><creatorcontrib>Pianpanit, Theerasarn</creatorcontrib><creatorcontrib>Niparnan, Nattee</creatorcontrib><creatorcontrib>Mukhopadhyay, Subhas Chandra</creatorcontrib><creatorcontrib>Wilaiprasitporn, Theerawit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piriyajitakonkij, Maytus</au><au>Warin, Patchanon</au><au>Lakhan, Payongkit</au><au>Leelaarporn, Pitshaporn</au><au>Kumchaiseemak, Nakorn</au><au>Suwajanakorn, Supasorn</au><au>Pianpanit, Theerasarn</au><au>Niparnan, Nattee</au><au>Mukhopadhyay, Subhas Chandra</au><au>Wilaiprasitporn, Theerawit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>25</volume><issue>4</issue><spage>1305</spage><epage>1314</epage><pages>1305-1314</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract><![CDATA[Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of <inline-formula><tex-math notation="LaTeX">73.7 \pm 0.8 \%</tex-math></inline-formula> significantly outperformed the mean accuracy of <inline-formula><tex-math notation="LaTeX">59.9 \pm 0.7 \%</tex-math></inline-formula> obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>32960771</pmid><doi>10.1109/JBHI.2020.3025900</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2974-8699</orcidid><orcidid>https://orcid.org/0000-0003-4941-4354</orcidid><orcidid>https://orcid.org/0000-0002-8600-5907</orcidid><orcidid>https://orcid.org/0000-0003-2226-654X</orcidid><orcidid>https://orcid.org/0000-0001-8755-875X</orcidid><orcidid>https://orcid.org/0000-0003-2615-4131</orcidid><orcidid>https://orcid.org/0000-0001-9520-2761</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2021-04, Vol.25 (4), p.1305-1314
issn 2168-2194
2168-2208
language eng
recordid cdi_pubmed_primary_32960771
source IEEE Xplore (Online service)
subjects Artificial neural networks
Biomedical monitoring
Classification
contactless sensing
Convolution
Data augmentation
Deep learning
Doppler radar
Heart rate
Human activity recognition
Learning
Monitoring
Moving object recognition
Neural networks
Posture
Sleep
Sleep disorders
Sleep monitoring
sleep posture
Time series
Ultra wideband radar
Ultrawideband radar
UWB radar
title SleepPoseNet: Multi-View Learning for Sleep Postural Transition Recognition Using UWB
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SleepPoseNet:%20Multi-View%20Learning%20for%20Sleep%20Postural%20Transition%20Recognition%20Using%20UWB&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Piriyajitakonkij,%20Maytus&rft.date=2021-04-01&rft.volume=25&rft.issue=4&rft.spage=1305&rft.epage=1314&rft.pages=1305-1314&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2020.3025900&rft_dat=%3Cproquest_pubme%3E2510432528%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-198acf60fd68d131285813151ba39c2c563f5416b5236cd8b9772ed082a5b5b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2510432528&rft_id=info:pmid/32960771&rft_ieee_id=9204373&rfr_iscdi=true