Loading…
PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines
In recent years, a wide variety of automated machine learning (AutoML) methods have been proposed to generate end-to-end ML pipelines. While these techniques facilitate the creation of models, given their black-box nature, the complexity of the underlying algorithms, and the large number of pipeline...
Saved in:
Published in: | IEEE transactions on visualization and computer graphics 2021-02, Vol.27 (2), p.390-400 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-54507d2b6ff1df4e384ca16bc4537bacc0a992decb5fce9ccc47fd2024abc59a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-54507d2b6ff1df4e384ca16bc4537bacc0a992decb5fce9ccc47fd2024abc59a3 |
container_end_page | 400 |
container_issue | 2 |
container_start_page | 390 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 27 |
creator | Ono, Jorge Piazentin Castelo, Sonia Lopez, Roque Bertini, Enrico Freire, Juliana Silva, Claudio |
description | In recent years, a wide variety of automated machine learning (AutoML) methods have been proposed to generate end-to-end ML pipelines. While these techniques facilitate the creation of models, given their black-box nature, the complexity of the underlying algorithms, and the large number of pipelines they derive, they are difficult for developers to debug. It is also challenging for machine learning experts to select an AutoML system that is well suited for a given problem. In this paper, we present the Pipeline Profiler, an interactive visualization tool that allows the exploration and comparison of the solution space of machine learning (ML) pipelines produced by AutoML systems. PipelineProfiler is integrated with Jupyter Notebook and can be combined with common data science tools to enable a rich set of analyses of the ML pipelines, providing users a better understanding of the algorithms that generated them as well as insights into how they can be improved. We demonstrate the utility of our tool through use cases where PipelineProfiler is used to better understand and improve a real-world AutoML system. Furthermore, we validate our approach by presenting a detailed analysis of a think-aloud experiment with six data scientists who develop and evaluate AutoML tools. |
doi_str_mv | 10.1109/TVCG.2020.3030361 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33048694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9222086</ieee_id><sourcerecordid>2483266814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-54507d2b6ff1df4e384ca16bc4537bacc0a992decb5fce9ccc47fd2024abc59a3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlZ_gAgS8OJla742u_G2lFqFihVqr0s2m2BK2tRkF-y_d0s_DjKHGZhnXpgHgFuMhhgj8TRfjCZDgggaUtQVx2egjwXDCUoRP-9mlGUJ4YT3wFWMS4QwY7m4BD1KEcu5YH3wObMb7exaz4I31unwDAu4sLGVDhZr6baNVRHOvXfQ-ACbbw3Hvxvng2ysX0NvYNE2_n0KjznxGlwY6aK-OfQB-HoZz0evyfRj8jYqpomiTDRJylKU1aTixuDaME1zpiTmlWIpzSqpFJJCkFqrKjVKC6UUy0zdPctkpVIh6QA87nM3wf-0OjblykalnZNr7dtYEpZiTGmWpR368A9d-jZ03-2onBLOc8w6Cu8pFXyMQZtyE-xKhm2JUbnzXe58lzvf5cF3d3N_SG6rla5PF0fBHXC3B6zW-rQWhBCUc_oHsyyD5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483266814</pqid></control><display><type>article</type><title>PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines</title><source>IEEE Xplore (Online service)</source><creator>Ono, Jorge Piazentin ; Castelo, Sonia ; Lopez, Roque ; Bertini, Enrico ; Freire, Juliana ; Silva, Claudio</creator><creatorcontrib>Ono, Jorge Piazentin ; Castelo, Sonia ; Lopez, Roque ; Bertini, Enrico ; Freire, Juliana ; Silva, Claudio</creatorcontrib><description>In recent years, a wide variety of automated machine learning (AutoML) methods have been proposed to generate end-to-end ML pipelines. While these techniques facilitate the creation of models, given their black-box nature, the complexity of the underlying algorithms, and the large number of pipelines they derive, they are difficult for developers to debug. It is also challenging for machine learning experts to select an AutoML system that is well suited for a given problem. In this paper, we present the Pipeline Profiler, an interactive visualization tool that allows the exploration and comparison of the solution space of machine learning (ML) pipelines produced by AutoML systems. PipelineProfiler is integrated with Jupyter Notebook and can be combined with common data science tools to enable a rich set of analyses of the ML pipelines, providing users a better understanding of the algorithms that generated them as well as insights into how they can be improved. We demonstrate the utility of our tool through use cases where PipelineProfiler is used to better understand and improve a real-world AutoML system. Furthermore, we validate our approach by presenting a detailed analysis of a think-aloud experiment with six data scientists who develop and evaluate AutoML tools.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2020.3030361</identifier><identifier>PMID: 33048694</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Automatic Machine Learning ; Correlation ; Data visualization ; Machine learning ; Model Evaluation ; Pipeline Visualization ; Pipelines ; Search problems ; Solution space ; Visual analytics</subject><ispartof>IEEE transactions on visualization and computer graphics, 2021-02, Vol.27 (2), p.390-400</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-54507d2b6ff1df4e384ca16bc4537bacc0a992decb5fce9ccc47fd2024abc59a3</citedby><cites>FETCH-LOGICAL-c349t-54507d2b6ff1df4e384ca16bc4537bacc0a992decb5fce9ccc47fd2024abc59a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9222086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33048694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ono, Jorge Piazentin</creatorcontrib><creatorcontrib>Castelo, Sonia</creatorcontrib><creatorcontrib>Lopez, Roque</creatorcontrib><creatorcontrib>Bertini, Enrico</creatorcontrib><creatorcontrib>Freire, Juliana</creatorcontrib><creatorcontrib>Silva, Claudio</creatorcontrib><title>PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>In recent years, a wide variety of automated machine learning (AutoML) methods have been proposed to generate end-to-end ML pipelines. While these techniques facilitate the creation of models, given their black-box nature, the complexity of the underlying algorithms, and the large number of pipelines they derive, they are difficult for developers to debug. It is also challenging for machine learning experts to select an AutoML system that is well suited for a given problem. In this paper, we present the Pipeline Profiler, an interactive visualization tool that allows the exploration and comparison of the solution space of machine learning (ML) pipelines produced by AutoML systems. PipelineProfiler is integrated with Jupyter Notebook and can be combined with common data science tools to enable a rich set of analyses of the ML pipelines, providing users a better understanding of the algorithms that generated them as well as insights into how they can be improved. We demonstrate the utility of our tool through use cases where PipelineProfiler is used to better understand and improve a real-world AutoML system. Furthermore, we validate our approach by presenting a detailed analysis of a think-aloud experiment with six data scientists who develop and evaluate AutoML tools.</description><subject>Algorithms</subject><subject>Automatic Machine Learning</subject><subject>Correlation</subject><subject>Data visualization</subject><subject>Machine learning</subject><subject>Model Evaluation</subject><subject>Pipeline Visualization</subject><subject>Pipelines</subject><subject>Search problems</subject><subject>Solution space</subject><subject>Visual analytics</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMotlZ_gAgS8OJla742u_G2lFqFihVqr0s2m2BK2tRkF-y_d0s_DjKHGZhnXpgHgFuMhhgj8TRfjCZDgggaUtQVx2egjwXDCUoRP-9mlGUJ4YT3wFWMS4QwY7m4BD1KEcu5YH3wObMb7exaz4I31unwDAu4sLGVDhZr6baNVRHOvXfQ-ACbbw3Hvxvng2ysX0NvYNE2_n0KjznxGlwY6aK-OfQB-HoZz0evyfRj8jYqpomiTDRJylKU1aTixuDaME1zpiTmlWIpzSqpFJJCkFqrKjVKC6UUy0zdPctkpVIh6QA87nM3wf-0OjblykalnZNr7dtYEpZiTGmWpR368A9d-jZ03-2onBLOc8w6Cu8pFXyMQZtyE-xKhm2JUbnzXe58lzvf5cF3d3N_SG6rla5PF0fBHXC3B6zW-rQWhBCUc_oHsyyD5g</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Ono, Jorge Piazentin</creator><creator>Castelo, Sonia</creator><creator>Lopez, Roque</creator><creator>Bertini, Enrico</creator><creator>Freire, Juliana</creator><creator>Silva, Claudio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20210201</creationdate><title>PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines</title><author>Ono, Jorge Piazentin ; Castelo, Sonia ; Lopez, Roque ; Bertini, Enrico ; Freire, Juliana ; Silva, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-54507d2b6ff1df4e384ca16bc4537bacc0a992decb5fce9ccc47fd2024abc59a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automatic Machine Learning</topic><topic>Correlation</topic><topic>Data visualization</topic><topic>Machine learning</topic><topic>Model Evaluation</topic><topic>Pipeline Visualization</topic><topic>Pipelines</topic><topic>Search problems</topic><topic>Solution space</topic><topic>Visual analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ono, Jorge Piazentin</creatorcontrib><creatorcontrib>Castelo, Sonia</creatorcontrib><creatorcontrib>Lopez, Roque</creatorcontrib><creatorcontrib>Bertini, Enrico</creatorcontrib><creatorcontrib>Freire, Juliana</creatorcontrib><creatorcontrib>Silva, Claudio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ono, Jorge Piazentin</au><au>Castelo, Sonia</au><au>Lopez, Roque</au><au>Bertini, Enrico</au><au>Freire, Juliana</au><au>Silva, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>390</spage><epage>400</epage><pages>390-400</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>In recent years, a wide variety of automated machine learning (AutoML) methods have been proposed to generate end-to-end ML pipelines. While these techniques facilitate the creation of models, given their black-box nature, the complexity of the underlying algorithms, and the large number of pipelines they derive, they are difficult for developers to debug. It is also challenging for machine learning experts to select an AutoML system that is well suited for a given problem. In this paper, we present the Pipeline Profiler, an interactive visualization tool that allows the exploration and comparison of the solution space of machine learning (ML) pipelines produced by AutoML systems. PipelineProfiler is integrated with Jupyter Notebook and can be combined with common data science tools to enable a rich set of analyses of the ML pipelines, providing users a better understanding of the algorithms that generated them as well as insights into how they can be improved. We demonstrate the utility of our tool through use cases where PipelineProfiler is used to better understand and improve a real-world AutoML system. Furthermore, we validate our approach by presenting a detailed analysis of a think-aloud experiment with six data scientists who develop and evaluate AutoML tools.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33048694</pmid><doi>10.1109/TVCG.2020.3030361</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2021-02, Vol.27 (2), p.390-400 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_pubmed_primary_33048694 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Automatic Machine Learning Correlation Data visualization Machine learning Model Evaluation Pipeline Visualization Pipelines Search problems Solution space Visual analytics |
title | PipelineProfiler: A Visual Analytics Tool for the Exploration of AutoML Pipelines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PipelineProfiler:%20A%20Visual%20Analytics%20Tool%20for%20the%20Exploration%20of%20AutoML%20Pipelines&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Ono,%20Jorge%20Piazentin&rft.date=2021-02-01&rft.volume=27&rft.issue=2&rft.spage=390&rft.epage=400&rft.pages=390-400&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2020.3030361&rft_dat=%3Cproquest_pubme%3E2483266814%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-54507d2b6ff1df4e384ca16bc4537bacc0a992decb5fce9ccc47fd2024abc59a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2483266814&rft_id=info:pmid/33048694&rft_ieee_id=9222086&rfr_iscdi=true |