Loading…

Operating a graphite calorimeter in quasi-isothermal mode under high-energy x-ray beams

In this study, we developed a semi-active method to run a graphite calorimeter in the quasi-isothermal mode under high-energy x-ray beams. The rate of energy imparted by the beam during irradiation was compensated mainly by removing the electrical heating power based on the pre-calculation and in pa...

Full description

Saved in:
Bibliographic Details
Published in:Physics in medicine & biology 2020-12, Vol.65 (23), p.235005-235005
Main Authors: Kim, In Jung, Kim, Yun Ho, Park, Jong In, Kim, Byoung-Chul, Yi, Chul-Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we developed a semi-active method to run a graphite calorimeter in the quasi-isothermal mode under high-energy x-ray beams. The rate of energy imparted by the beam during irradiation was compensated mainly by removing the electrical heating power based on the pre-calculation and in part by an active automated algorithm, as well, while the temperature of the calorimeter core was kept constant. Irradiations were performed under the linear electron accelerator x-ray beams at 6, 8, 10, 15, and 18 MV. A simple model was applied to analyze the results. The energy imparted to the core was determined with an uncertainty level of 0.2%-0.3%, and the results were reaffirmed by comparing it with that obtained by the quasi-adiabatic mode. The normalized root-mean-square deviation to the mean from the quasi-adiabatic mode was 0.11%, and the associated uncertainty was 0.16% taking into account the correlation of the uncertainty components. This level of agreement showed that the present method is practical for the high-energy x-ray dosimetry.
ISSN:0031-9155
1361-6560
DOI:10.1088/1361-6560/abc132