Loading…

Augmenting Virtual Reality Terrain Display with Smart Shoe Physical Rendering: A Pilot Study

Haptic terrain rendering is limited in existing Virtual Reality (VR) systems. This article describes integration of the Smart Shoe (SS) for physical terrain display with the TreadPort VR system. The SS renders both gross sloped terrain and subtle sensations of stepping on small objects or uneven sur...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on haptics 2021-01, Vol.14 (1), p.174-187
Main Authors: Wang, Yue, Truong, Takara E., Chesebrough, Samuel W., Willemsen, Pete, Foreman, K. Bo, Merryweather, Andrew S., Hollerbach, John M., Minor, Mark A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Haptic terrain rendering is limited in existing Virtual Reality (VR) systems. This article describes integration of the Smart Shoe (SS) for physical terrain display with the TreadPort VR system. The SS renders both gross sloped terrain and subtle sensations of stepping on small objects or uneven surfaces. The TreadPort projects terrain on the floor and the SS renders terrain that the user steps upon via motion tracking. The research is motivated towards eventually providing gait training for people with Parkinson's Disease (PD), hence this work presents a pilot study evaluating haptic terrain rendering with healthy elderly and PD participants wearing the SS within the TreadPort. Uneven cobblestone surfaces are rendered by the SS as the participant steps on their graphical representation in VR. While posthoc analysis shows the study is underpowered, kinematic and spatiotemporal results derived from motion capture data demonstrates kinesthetic response (e.g., increased maximum ankle angle and minimum toe clearance, reduced minimum ankle angle and knee angle) provided by the SS. Questionnaire data shows increased VR realism and difficulty walking on cobbled terrain using SS rendering. Thus, results indicate that the integrated haptic system demonstrates promise in potential gait training for PD in future work.
ISSN:1939-1412
2329-4051
DOI:10.1109/TOH.2020.3029896