Loading…
Parallel Transport Tractography
Tractography is an important technique that allows the in vivo reconstruction of structural connections in the brain using diffusion MRI. Although tracking algorithms have improved during the last two decades, results of validation studies and international challenges warn about the reliability of t...
Saved in:
Published in: | IEEE transactions on medical imaging 2021-02, Vol.40 (2), p.635-647 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-ef6c5977861038154a0d6a53f4ea4a7d3dc53e2fb1332f36487937db5ee385a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-ef6c5977861038154a0d6a53f4ea4a7d3dc53e2fb1332f36487937db5ee385a43 |
container_end_page | 647 |
container_issue | 2 |
container_start_page | 635 |
container_title | IEEE transactions on medical imaging |
container_volume | 40 |
creator | Aydogan, Dogu Baran Shi, Yonggang |
description | Tractography is an important technique that allows the in vivo reconstruction of structural connections in the brain using diffusion MRI. Although tracking algorithms have improved during the last two decades, results of validation studies and international challenges warn about the reliability of tractography and point out the need for improved algorithms. In propagation-based tracking, connections have traditionally been modeled as piece-wise linear segments. In this work, we propose a novel propagation-based tracker that is capable of generating geometrically smooth ( {C}^{{1}} ) curves using parallel transport frames. Notably, our approach does not increase the complexity of the propagation problem that remains two-dimensional. Moreover, our tracker has a novel mechanism to reduce noise related propagation errors by incorporating topographic regularity of connections, a neuroanatomic property of many brain pathways. We ran extensive experiments and compared our approach against deterministic and other probabilistic algorithms. Our experiments on FiberCup and ISMRM 2015 challenge datasets as well as on 56 subjects of the Human Connectome Project show highly promising results both visually and quantitatively. Open-source implementations of the algorithm are shared publicly. |
doi_str_mv | 10.1109/TMI.2020.3034038 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33104507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9239977</ieee_id><sourcerecordid>2486592612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-ef6c5977861038154a0d6a53f4ea4a7d3dc53e2fb1332f36487937db5ee385a43</originalsourceid><addsrcrecordid>eNpdkN9LwzAQx4Mobk7fBUEFX3zpTHKXtH0RZPgLJvowwbeQtenW0TUzaYX996ZsDvXpDu5zX-4-hJwyOmSMpjeTl-chp5wOgQJSSPZInwmRRFzgxz7pUx4nEaWS98iR9wtKGQqaHpIeAKOhjfvk4k07XVWmupw4XfuVdU3XZY2dOb2ar4_JQaErb062dUDeH-4no6do_Pr4PLobRxkiNpEpZCbSOE4kC2cwgZrmUgso0GjUcQ55JsDwYsoAeAESkziFOJ8KYyARGmFAbje5q3a6NHlm6ibcpVauXGq3VlaX6u-kLudqZr9UyGGIPARcbwOc_WyNb9Sy9JmpKl0b23rFUaAUgMgCevUPXdjW1eG9QCVSpFyyLpBuqMxZ750pdscwqjr7KthXnX21tR9Wzn8_sVv40R2Asw1QGmN245RDGtzBNwv7hzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486592612</pqid></control><display><type>article</type><title>Parallel Transport Tractography</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Aydogan, Dogu Baran ; Shi, Yonggang</creator><creatorcontrib>Aydogan, Dogu Baran ; Shi, Yonggang</creatorcontrib><description>Tractography is an important technique that allows the in vivo reconstruction of structural connections in the brain using diffusion MRI. Although tracking algorithms have improved during the last two decades, results of validation studies and international challenges warn about the reliability of tractography and point out the need for improved algorithms. In propagation-based tracking, connections have traditionally been modeled as piece-wise linear segments. In this work, we propose a novel propagation-based tracker that is capable of generating geometrically smooth (<inline-formula> <tex-math notation="LaTeX">{C}^{{1}} </tex-math></inline-formula>) curves using parallel transport frames. Notably, our approach does not increase the complexity of the propagation problem that remains two-dimensional. Moreover, our tracker has a novel mechanism to reduce noise related propagation errors by incorporating topographic regularity of connections, a neuroanatomic property of many brain pathways. We ran extensive experiments and compared our approach against deterministic and other probabilistic algorithms. Our experiments on FiberCup and ISMRM 2015 challenge datasets as well as on 56 subjects of the Human Connectome Project show highly promising results both visually and quantitatively. Open-source implementations of the algorithm are shared publicly.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2020.3034038</identifier><identifier>PMID: 33104507</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Anatomy ; Brain ; Brain - diagnostic imaging ; Brain architecture ; Brain modeling ; Complexity theory ; Connectome ; Diffusion Magnetic Resonance Imaging ; diffusion MRI ; Diffusion Tensor Imaging ; Humans ; Image color analysis ; In vivo ; In vivo methods and tests ; Magnetic resonance imaging ; National Institutes of Health ; Noise propagation ; Noise reduction ; parallel transport ; Probabilistic logic ; Propagation ; Reproducibility of Results ; Tracking ; tractography</subject><ispartof>IEEE transactions on medical imaging, 2021-02, Vol.40 (2), p.635-647</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-ef6c5977861038154a0d6a53f4ea4a7d3dc53e2fb1332f36487937db5ee385a43</citedby><cites>FETCH-LOGICAL-c444t-ef6c5977861038154a0d6a53f4ea4a7d3dc53e2fb1332f36487937db5ee385a43</cites><orcidid>0000-0002-3466-4302 ; 0000-0002-7840-3294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9239977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33104507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aydogan, Dogu Baran</creatorcontrib><creatorcontrib>Shi, Yonggang</creatorcontrib><title>Parallel Transport Tractography</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Tractography is an important technique that allows the in vivo reconstruction of structural connections in the brain using diffusion MRI. Although tracking algorithms have improved during the last two decades, results of validation studies and international challenges warn about the reliability of tractography and point out the need for improved algorithms. In propagation-based tracking, connections have traditionally been modeled as piece-wise linear segments. In this work, we propose a novel propagation-based tracker that is capable of generating geometrically smooth (<inline-formula> <tex-math notation="LaTeX">{C}^{{1}} </tex-math></inline-formula>) curves using parallel transport frames. Notably, our approach does not increase the complexity of the propagation problem that remains two-dimensional. Moreover, our tracker has a novel mechanism to reduce noise related propagation errors by incorporating topographic regularity of connections, a neuroanatomic property of many brain pathways. We ran extensive experiments and compared our approach against deterministic and other probabilistic algorithms. Our experiments on FiberCup and ISMRM 2015 challenge datasets as well as on 56 subjects of the Human Connectome Project show highly promising results both visually and quantitatively. Open-source implementations of the algorithm are shared publicly.</description><subject>Algorithms</subject><subject>Anatomy</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain architecture</subject><subject>Brain modeling</subject><subject>Complexity theory</subject><subject>Connectome</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>diffusion MRI</subject><subject>Diffusion Tensor Imaging</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>In vivo</subject><subject>In vivo methods and tests</subject><subject>Magnetic resonance imaging</subject><subject>National Institutes of Health</subject><subject>Noise propagation</subject><subject>Noise reduction</subject><subject>parallel transport</subject><subject>Probabilistic logic</subject><subject>Propagation</subject><subject>Reproducibility of Results</subject><subject>Tracking</subject><subject>tractography</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkN9LwzAQx4Mobk7fBUEFX3zpTHKXtH0RZPgLJvowwbeQtenW0TUzaYX996ZsDvXpDu5zX-4-hJwyOmSMpjeTl-chp5wOgQJSSPZInwmRRFzgxz7pUx4nEaWS98iR9wtKGQqaHpIeAKOhjfvk4k07XVWmupw4XfuVdU3XZY2dOb2ar4_JQaErb062dUDeH-4no6do_Pr4PLobRxkiNpEpZCbSOE4kC2cwgZrmUgso0GjUcQ55JsDwYsoAeAESkziFOJ8KYyARGmFAbje5q3a6NHlm6ibcpVauXGq3VlaX6u-kLudqZr9UyGGIPARcbwOc_WyNb9Sy9JmpKl0b23rFUaAUgMgCevUPXdjW1eG9QCVSpFyyLpBuqMxZ750pdscwqjr7KthXnX21tR9Wzn8_sVv40R2Asw1QGmN245RDGtzBNwv7hzg</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Aydogan, Dogu Baran</creator><creator>Shi, Yonggang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3466-4302</orcidid><orcidid>https://orcid.org/0000-0002-7840-3294</orcidid></search><sort><creationdate>20210201</creationdate><title>Parallel Transport Tractography</title><author>Aydogan, Dogu Baran ; Shi, Yonggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-ef6c5977861038154a0d6a53f4ea4a7d3dc53e2fb1332f36487937db5ee385a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Anatomy</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain architecture</topic><topic>Brain modeling</topic><topic>Complexity theory</topic><topic>Connectome</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>diffusion MRI</topic><topic>Diffusion Tensor Imaging</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>In vivo</topic><topic>In vivo methods and tests</topic><topic>Magnetic resonance imaging</topic><topic>National Institutes of Health</topic><topic>Noise propagation</topic><topic>Noise reduction</topic><topic>parallel transport</topic><topic>Probabilistic logic</topic><topic>Propagation</topic><topic>Reproducibility of Results</topic><topic>Tracking</topic><topic>tractography</topic><toplevel>online_resources</toplevel><creatorcontrib>Aydogan, Dogu Baran</creatorcontrib><creatorcontrib>Shi, Yonggang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aydogan, Dogu Baran</au><au>Shi, Yonggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallel Transport Tractography</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>40</volume><issue>2</issue><spage>635</spage><epage>647</epage><pages>635-647</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Tractography is an important technique that allows the in vivo reconstruction of structural connections in the brain using diffusion MRI. Although tracking algorithms have improved during the last two decades, results of validation studies and international challenges warn about the reliability of tractography and point out the need for improved algorithms. In propagation-based tracking, connections have traditionally been modeled as piece-wise linear segments. In this work, we propose a novel propagation-based tracker that is capable of generating geometrically smooth (<inline-formula> <tex-math notation="LaTeX">{C}^{{1}} </tex-math></inline-formula>) curves using parallel transport frames. Notably, our approach does not increase the complexity of the propagation problem that remains two-dimensional. Moreover, our tracker has a novel mechanism to reduce noise related propagation errors by incorporating topographic regularity of connections, a neuroanatomic property of many brain pathways. We ran extensive experiments and compared our approach against deterministic and other probabilistic algorithms. Our experiments on FiberCup and ISMRM 2015 challenge datasets as well as on 56 subjects of the Human Connectome Project show highly promising results both visually and quantitatively. Open-source implementations of the algorithm are shared publicly.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33104507</pmid><doi>10.1109/TMI.2020.3034038</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3466-4302</orcidid><orcidid>https://orcid.org/0000-0002-7840-3294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2021-02, Vol.40 (2), p.635-647 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_pubmed_primary_33104507 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Anatomy Brain Brain - diagnostic imaging Brain architecture Brain modeling Complexity theory Connectome Diffusion Magnetic Resonance Imaging diffusion MRI Diffusion Tensor Imaging Humans Image color analysis In vivo In vivo methods and tests Magnetic resonance imaging National Institutes of Health Noise propagation Noise reduction parallel transport Probabilistic logic Propagation Reproducibility of Results Tracking tractography |
title | Parallel Transport Tractography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallel%20Transport%20Tractography&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Aydogan,%20Dogu%20Baran&rft.date=2021-02-01&rft.volume=40&rft.issue=2&rft.spage=635&rft.epage=647&rft.pages=635-647&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2020.3034038&rft_dat=%3Cproquest_pubme%3E2486592612%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-ef6c5977861038154a0d6a53f4ea4a7d3dc53e2fb1332f36487937db5ee385a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486592612&rft_id=info:pmid/33104507&rft_ieee_id=9239977&rfr_iscdi=true |