Loading…
Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation
Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aime...
Saved in:
Published in: | Nanotechnology 2021-02, Vol.32 (9), p.095101-095101 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3 |
container_end_page | 095101 |
container_issue | 9 |
container_start_page | 095101 |
container_title | Nanotechnology |
container_volume | 32 |
creator | Kunjiappan, Selvaraj Sankaranarayanan, Murugesan Karan Kumar, Banoth Pavadai, Parasuraman Babkiewicz, Ewa Maszczyk, Piotr Glodkowska-Mrowka, Eliza Arunachalam, Sankarganesh Ram Kumar Pandian, Sureshbabu Ravishankar, Vigneshwaran Baskararaj, Suraj Vellaichamy, Sivakumar Arulmani, Lalitha Panneerselvam, Theivendren |
description | Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 g × ml−1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity. |
doi_str_mv | 10.1088/1361-6528/abc57e |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33113518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455843742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxYMo9rW6dyVZdtGx-ZzJuJOHVqHgRtchk49yS14yJpnig_7xzvBqV-LmBg6_cy45F6F3lHygRKlrynva9ZKpazNZOfgXaPcsvUQ7MsqhE0KJM3Re6z0hlCpGX6MzzinlkqodetybuRqwkLqYjfMO1xzB4QjzOpNJeTalgY2-fsTOV7hLV3iC7KC2AtPSIK8CJFwhgs34kJ2PkO6wSW6TH6CVjO2x5ZZ_r2vaEfsHExezGd-gV8HE6t8-vRfo55fPP_Zfu9vvN9_2n247K0jfupEYNhHuFLOhp0PohRyt58SMwXhCRsVGLqySVCgWguxJGIwyvCfOknHinl-gy1PuXPKvxdemD1Ctj9Ekn5eqmZBSCT4ItqLkhNqSay0-6LnAwZSjpkRvneutYL0VrE-dr5b3T-nLdPDu2fC35BW4OgGQZ32fl5LWz_4v7_If-HYKzZke9XpVSqieXeB_AIm-mww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455843742</pqid></control><display><type>article</type><title>Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Kunjiappan, Selvaraj ; Sankaranarayanan, Murugesan ; Karan Kumar, Banoth ; Pavadai, Parasuraman ; Babkiewicz, Ewa ; Maszczyk, Piotr ; Glodkowska-Mrowka, Eliza ; Arunachalam, Sankarganesh ; Ram Kumar Pandian, Sureshbabu ; Ravishankar, Vigneshwaran ; Baskararaj, Suraj ; Vellaichamy, Sivakumar ; Arulmani, Lalitha ; Panneerselvam, Theivendren</creator><creatorcontrib>Kunjiappan, Selvaraj ; Sankaranarayanan, Murugesan ; Karan Kumar, Banoth ; Pavadai, Parasuraman ; Babkiewicz, Ewa ; Maszczyk, Piotr ; Glodkowska-Mrowka, Eliza ; Arunachalam, Sankarganesh ; Ram Kumar Pandian, Sureshbabu ; Ravishankar, Vigneshwaran ; Baskararaj, Suraj ; Vellaichamy, Sivakumar ; Arulmani, Lalitha ; Panneerselvam, Theivendren</creatorcontrib><description>Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 g × ml−1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abc57e</identifier><identifier>PMID: 33113518</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>8-methyl-N-vanillyl-6-nonenamide ; Animals ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - pharmacokinetics ; Antineoplastic Agents - pharmacology ; apoptosis ; Capsaicin - chemical synthesis ; Capsaicin - pharmacokinetics ; Capsaicin - pharmacology ; capsaicinoid ; Carcinoma, Hepatocellular - drug therapy ; Carcinoma, Hepatocellular - metabolism ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; chilli pepper ; CSK Tyrosine-Protein Kinase - metabolism ; Drug Design ; Gene Expression Regulation, Neoplastic - drug effects ; Hep G2 Cells ; human liver carcinoma cells ; Humans ; Inhibitory Concentration 50 ; Lipids ; Liver Neoplasms - drug therapy ; Liver Neoplasms - metabolism ; Models, Molecular ; molecular docking ; molecular dynamic simulation ; Molecular Dynamics Simulation ; Nanoparticles ; p38 Mitogen-Activated Protein Kinases - metabolism ; Particle Size ; Proto-Oncogene Proteins c-abl - metabolism ; Rats ; Receptors, Vascular Endothelial Growth Factor - chemistry ; Receptors, Vascular Endothelial Growth Factor - metabolism ; Solubility ; Tissue Distribution</subject><ispartof>Nanotechnology, 2021-02, Vol.32 (9), p.095101-095101</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3</citedby><cites>FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3</cites><orcidid>0000-0002-1738-419X ; 0000-0002-6741-5118 ; 0000-0003-2398-8448 ; 0000-0002-8458-4546 ; 0000-0002-9615-6944 ; 0000-0002-5865-8425 ; 0000-0002-8197-4688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33113518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunjiappan, Selvaraj</creatorcontrib><creatorcontrib>Sankaranarayanan, Murugesan</creatorcontrib><creatorcontrib>Karan Kumar, Banoth</creatorcontrib><creatorcontrib>Pavadai, Parasuraman</creatorcontrib><creatorcontrib>Babkiewicz, Ewa</creatorcontrib><creatorcontrib>Maszczyk, Piotr</creatorcontrib><creatorcontrib>Glodkowska-Mrowka, Eliza</creatorcontrib><creatorcontrib>Arunachalam, Sankarganesh</creatorcontrib><creatorcontrib>Ram Kumar Pandian, Sureshbabu</creatorcontrib><creatorcontrib>Ravishankar, Vigneshwaran</creatorcontrib><creatorcontrib>Baskararaj, Suraj</creatorcontrib><creatorcontrib>Vellaichamy, Sivakumar</creatorcontrib><creatorcontrib>Arulmani, Lalitha</creatorcontrib><creatorcontrib>Panneerselvam, Theivendren</creatorcontrib><title>Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 g × ml−1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity.</description><subject>8-methyl-N-vanillyl-6-nonenamide</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>apoptosis</subject><subject>Capsaicin - chemical synthesis</subject><subject>Capsaicin - pharmacokinetics</subject><subject>Capsaicin - pharmacology</subject><subject>capsaicinoid</subject><subject>Carcinoma, Hepatocellular - drug therapy</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>chilli pepper</subject><subject>CSK Tyrosine-Protein Kinase - metabolism</subject><subject>Drug Design</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Hep G2 Cells</subject><subject>human liver carcinoma cells</subject><subject>Humans</subject><subject>Inhibitory Concentration 50</subject><subject>Lipids</subject><subject>Liver Neoplasms - drug therapy</subject><subject>Liver Neoplasms - metabolism</subject><subject>Models, Molecular</subject><subject>molecular docking</subject><subject>molecular dynamic simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanoparticles</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Particle Size</subject><subject>Proto-Oncogene Proteins c-abl - metabolism</subject><subject>Rats</subject><subject>Receptors, Vascular Endothelial Growth Factor - chemistry</subject><subject>Receptors, Vascular Endothelial Growth Factor - metabolism</subject><subject>Solubility</subject><subject>Tissue Distribution</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1rFTEUxYMo9rW6dyVZdtGx-ZzJuJOHVqHgRtchk49yS14yJpnig_7xzvBqV-LmBg6_cy45F6F3lHygRKlrynva9ZKpazNZOfgXaPcsvUQ7MsqhE0KJM3Re6z0hlCpGX6MzzinlkqodetybuRqwkLqYjfMO1xzB4QjzOpNJeTalgY2-fsTOV7hLV3iC7KC2AtPSIK8CJFwhgs34kJ2PkO6wSW6TH6CVjO2x5ZZ_r2vaEfsHExezGd-gV8HE6t8-vRfo55fPP_Zfu9vvN9_2n247K0jfupEYNhHuFLOhp0PohRyt58SMwXhCRsVGLqySVCgWguxJGIwyvCfOknHinl-gy1PuXPKvxdemD1Ctj9Ekn5eqmZBSCT4ItqLkhNqSay0-6LnAwZSjpkRvneutYL0VrE-dr5b3T-nLdPDu2fC35BW4OgGQZ32fl5LWz_4v7_If-HYKzZke9XpVSqieXeB_AIm-mww</recordid><startdate>20210226</startdate><enddate>20210226</enddate><creator>Kunjiappan, Selvaraj</creator><creator>Sankaranarayanan, Murugesan</creator><creator>Karan Kumar, Banoth</creator><creator>Pavadai, Parasuraman</creator><creator>Babkiewicz, Ewa</creator><creator>Maszczyk, Piotr</creator><creator>Glodkowska-Mrowka, Eliza</creator><creator>Arunachalam, Sankarganesh</creator><creator>Ram Kumar Pandian, Sureshbabu</creator><creator>Ravishankar, Vigneshwaran</creator><creator>Baskararaj, Suraj</creator><creator>Vellaichamy, Sivakumar</creator><creator>Arulmani, Lalitha</creator><creator>Panneerselvam, Theivendren</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1738-419X</orcidid><orcidid>https://orcid.org/0000-0002-6741-5118</orcidid><orcidid>https://orcid.org/0000-0003-2398-8448</orcidid><orcidid>https://orcid.org/0000-0002-8458-4546</orcidid><orcidid>https://orcid.org/0000-0002-9615-6944</orcidid><orcidid>https://orcid.org/0000-0002-5865-8425</orcidid><orcidid>https://orcid.org/0000-0002-8197-4688</orcidid></search><sort><creationdate>20210226</creationdate><title>Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation</title><author>Kunjiappan, Selvaraj ; Sankaranarayanan, Murugesan ; Karan Kumar, Banoth ; Pavadai, Parasuraman ; Babkiewicz, Ewa ; Maszczyk, Piotr ; Glodkowska-Mrowka, Eliza ; Arunachalam, Sankarganesh ; Ram Kumar Pandian, Sureshbabu ; Ravishankar, Vigneshwaran ; Baskararaj, Suraj ; Vellaichamy, Sivakumar ; Arulmani, Lalitha ; Panneerselvam, Theivendren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>8-methyl-N-vanillyl-6-nonenamide</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>apoptosis</topic><topic>Capsaicin - chemical synthesis</topic><topic>Capsaicin - pharmacokinetics</topic><topic>Capsaicin - pharmacology</topic><topic>capsaicinoid</topic><topic>Carcinoma, Hepatocellular - drug therapy</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>chilli pepper</topic><topic>CSK Tyrosine-Protein Kinase - metabolism</topic><topic>Drug Design</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Hep G2 Cells</topic><topic>human liver carcinoma cells</topic><topic>Humans</topic><topic>Inhibitory Concentration 50</topic><topic>Lipids</topic><topic>Liver Neoplasms - drug therapy</topic><topic>Liver Neoplasms - metabolism</topic><topic>Models, Molecular</topic><topic>molecular docking</topic><topic>molecular dynamic simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanoparticles</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Particle Size</topic><topic>Proto-Oncogene Proteins c-abl - metabolism</topic><topic>Rats</topic><topic>Receptors, Vascular Endothelial Growth Factor - chemistry</topic><topic>Receptors, Vascular Endothelial Growth Factor - metabolism</topic><topic>Solubility</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunjiappan, Selvaraj</creatorcontrib><creatorcontrib>Sankaranarayanan, Murugesan</creatorcontrib><creatorcontrib>Karan Kumar, Banoth</creatorcontrib><creatorcontrib>Pavadai, Parasuraman</creatorcontrib><creatorcontrib>Babkiewicz, Ewa</creatorcontrib><creatorcontrib>Maszczyk, Piotr</creatorcontrib><creatorcontrib>Glodkowska-Mrowka, Eliza</creatorcontrib><creatorcontrib>Arunachalam, Sankarganesh</creatorcontrib><creatorcontrib>Ram Kumar Pandian, Sureshbabu</creatorcontrib><creatorcontrib>Ravishankar, Vigneshwaran</creatorcontrib><creatorcontrib>Baskararaj, Suraj</creatorcontrib><creatorcontrib>Vellaichamy, Sivakumar</creatorcontrib><creatorcontrib>Arulmani, Lalitha</creatorcontrib><creatorcontrib>Panneerselvam, Theivendren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunjiappan, Selvaraj</au><au>Sankaranarayanan, Murugesan</au><au>Karan Kumar, Banoth</au><au>Pavadai, Parasuraman</au><au>Babkiewicz, Ewa</au><au>Maszczyk, Piotr</au><au>Glodkowska-Mrowka, Eliza</au><au>Arunachalam, Sankarganesh</au><au>Ram Kumar Pandian, Sureshbabu</au><au>Ravishankar, Vigneshwaran</au><au>Baskararaj, Suraj</au><au>Vellaichamy, Sivakumar</au><au>Arulmani, Lalitha</au><au>Panneerselvam, Theivendren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2021-02-26</date><risdate>2021</risdate><volume>32</volume><issue>9</issue><spage>095101</spage><epage>095101</epage><pages>095101-095101</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 g × ml−1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33113518</pmid><doi>10.1088/1361-6528/abc57e</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1738-419X</orcidid><orcidid>https://orcid.org/0000-0002-6741-5118</orcidid><orcidid>https://orcid.org/0000-0003-2398-8448</orcidid><orcidid>https://orcid.org/0000-0002-8458-4546</orcidid><orcidid>https://orcid.org/0000-0002-9615-6944</orcidid><orcidid>https://orcid.org/0000-0002-5865-8425</orcidid><orcidid>https://orcid.org/0000-0002-8197-4688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2021-02, Vol.32 (9), p.095101-095101 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_pubmed_primary_33113518 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | 8-methyl-N-vanillyl-6-nonenamide Animals Antineoplastic Agents - chemical synthesis Antineoplastic Agents - pharmacokinetics Antineoplastic Agents - pharmacology apoptosis Capsaicin - chemical synthesis Capsaicin - pharmacokinetics Capsaicin - pharmacology capsaicinoid Carcinoma, Hepatocellular - drug therapy Carcinoma, Hepatocellular - metabolism Cell Proliferation - drug effects Cell Survival - drug effects chilli pepper CSK Tyrosine-Protein Kinase - metabolism Drug Design Gene Expression Regulation, Neoplastic - drug effects Hep G2 Cells human liver carcinoma cells Humans Inhibitory Concentration 50 Lipids Liver Neoplasms - drug therapy Liver Neoplasms - metabolism Models, Molecular molecular docking molecular dynamic simulation Molecular Dynamics Simulation Nanoparticles p38 Mitogen-Activated Protein Kinases - metabolism Particle Size Proto-Oncogene Proteins c-abl - metabolism Rats Receptors, Vascular Endothelial Growth Factor - chemistry Receptors, Vascular Endothelial Growth Factor - metabolism Solubility Tissue Distribution |
title | Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capsaicin-loaded%20solid%20lipid%20nanoparticles:%20design,%20biodistribution,%20in%20silico%20modeling%20and%20in%20vitro%20cytotoxicity%20evaluation&rft.jtitle=Nanotechnology&rft.au=Kunjiappan,%20Selvaraj&rft.date=2021-02-26&rft.volume=32&rft.issue=9&rft.spage=095101&rft.epage=095101&rft.pages=095101-095101&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abc57e&rft_dat=%3Cproquest_pubme%3E2455843742%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455843742&rft_id=info:pmid/33113518&rfr_iscdi=true |