Loading…

Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation

Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aime...

Full description

Saved in:
Bibliographic Details
Published in:Nanotechnology 2021-02, Vol.32 (9), p.095101-095101
Main Authors: Kunjiappan, Selvaraj, Sankaranarayanan, Murugesan, Karan Kumar, Banoth, Pavadai, Parasuraman, Babkiewicz, Ewa, Maszczyk, Piotr, Glodkowska-Mrowka, Eliza, Arunachalam, Sankarganesh, Ram Kumar Pandian, Sureshbabu, Ravishankar, Vigneshwaran, Baskararaj, Suraj, Vellaichamy, Sivakumar, Arulmani, Lalitha, Panneerselvam, Theivendren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3
cites cdi_FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3
container_end_page 095101
container_issue 9
container_start_page 095101
container_title Nanotechnology
container_volume 32
creator Kunjiappan, Selvaraj
Sankaranarayanan, Murugesan
Karan Kumar, Banoth
Pavadai, Parasuraman
Babkiewicz, Ewa
Maszczyk, Piotr
Glodkowska-Mrowka, Eliza
Arunachalam, Sankarganesh
Ram Kumar Pandian, Sureshbabu
Ravishankar, Vigneshwaran
Baskararaj, Suraj
Vellaichamy, Sivakumar
Arulmani, Lalitha
Panneerselvam, Theivendren
description Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 g × ml−1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity.
doi_str_mv 10.1088/1361-6528/abc57e
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33113518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2455843742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxYMo9rW6dyVZdtGx-ZzJuJOHVqHgRtchk49yS14yJpnig_7xzvBqV-LmBg6_cy45F6F3lHygRKlrynva9ZKpazNZOfgXaPcsvUQ7MsqhE0KJM3Re6z0hlCpGX6MzzinlkqodetybuRqwkLqYjfMO1xzB4QjzOpNJeTalgY2-fsTOV7hLV3iC7KC2AtPSIK8CJFwhgs34kJ2PkO6wSW6TH6CVjO2x5ZZ_r2vaEfsHExezGd-gV8HE6t8-vRfo55fPP_Zfu9vvN9_2n247K0jfupEYNhHuFLOhp0PohRyt58SMwXhCRsVGLqySVCgWguxJGIwyvCfOknHinl-gy1PuXPKvxdemD1Ctj9Ekn5eqmZBSCT4ItqLkhNqSay0-6LnAwZSjpkRvneutYL0VrE-dr5b3T-nLdPDu2fC35BW4OgGQZ32fl5LWz_4v7_If-HYKzZke9XpVSqieXeB_AIm-mww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455843742</pqid></control><display><type>article</type><title>Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Kunjiappan, Selvaraj ; Sankaranarayanan, Murugesan ; Karan Kumar, Banoth ; Pavadai, Parasuraman ; Babkiewicz, Ewa ; Maszczyk, Piotr ; Glodkowska-Mrowka, Eliza ; Arunachalam, Sankarganesh ; Ram Kumar Pandian, Sureshbabu ; Ravishankar, Vigneshwaran ; Baskararaj, Suraj ; Vellaichamy, Sivakumar ; Arulmani, Lalitha ; Panneerselvam, Theivendren</creator><creatorcontrib>Kunjiappan, Selvaraj ; Sankaranarayanan, Murugesan ; Karan Kumar, Banoth ; Pavadai, Parasuraman ; Babkiewicz, Ewa ; Maszczyk, Piotr ; Glodkowska-Mrowka, Eliza ; Arunachalam, Sankarganesh ; Ram Kumar Pandian, Sureshbabu ; Ravishankar, Vigneshwaran ; Baskararaj, Suraj ; Vellaichamy, Sivakumar ; Arulmani, Lalitha ; Panneerselvam, Theivendren</creatorcontrib><description>Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 g × ml−1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/abc57e</identifier><identifier>PMID: 33113518</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>8-methyl-N-vanillyl-6-nonenamide ; Animals ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - pharmacokinetics ; Antineoplastic Agents - pharmacology ; apoptosis ; Capsaicin - chemical synthesis ; Capsaicin - pharmacokinetics ; Capsaicin - pharmacology ; capsaicinoid ; Carcinoma, Hepatocellular - drug therapy ; Carcinoma, Hepatocellular - metabolism ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; chilli pepper ; CSK Tyrosine-Protein Kinase - metabolism ; Drug Design ; Gene Expression Regulation, Neoplastic - drug effects ; Hep G2 Cells ; human liver carcinoma cells ; Humans ; Inhibitory Concentration 50 ; Lipids ; Liver Neoplasms - drug therapy ; Liver Neoplasms - metabolism ; Models, Molecular ; molecular docking ; molecular dynamic simulation ; Molecular Dynamics Simulation ; Nanoparticles ; p38 Mitogen-Activated Protein Kinases - metabolism ; Particle Size ; Proto-Oncogene Proteins c-abl - metabolism ; Rats ; Receptors, Vascular Endothelial Growth Factor - chemistry ; Receptors, Vascular Endothelial Growth Factor - metabolism ; Solubility ; Tissue Distribution</subject><ispartof>Nanotechnology, 2021-02, Vol.32 (9), p.095101-095101</ispartof><rights>2020 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3</citedby><cites>FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3</cites><orcidid>0000-0002-1738-419X ; 0000-0002-6741-5118 ; 0000-0003-2398-8448 ; 0000-0002-8458-4546 ; 0000-0002-9615-6944 ; 0000-0002-5865-8425 ; 0000-0002-8197-4688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33113518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunjiappan, Selvaraj</creatorcontrib><creatorcontrib>Sankaranarayanan, Murugesan</creatorcontrib><creatorcontrib>Karan Kumar, Banoth</creatorcontrib><creatorcontrib>Pavadai, Parasuraman</creatorcontrib><creatorcontrib>Babkiewicz, Ewa</creatorcontrib><creatorcontrib>Maszczyk, Piotr</creatorcontrib><creatorcontrib>Glodkowska-Mrowka, Eliza</creatorcontrib><creatorcontrib>Arunachalam, Sankarganesh</creatorcontrib><creatorcontrib>Ram Kumar Pandian, Sureshbabu</creatorcontrib><creatorcontrib>Ravishankar, Vigneshwaran</creatorcontrib><creatorcontrib>Baskararaj, Suraj</creatorcontrib><creatorcontrib>Vellaichamy, Sivakumar</creatorcontrib><creatorcontrib>Arulmani, Lalitha</creatorcontrib><creatorcontrib>Panneerselvam, Theivendren</creatorcontrib><title>Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 g × ml−1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity.</description><subject>8-methyl-N-vanillyl-6-nonenamide</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>apoptosis</subject><subject>Capsaicin - chemical synthesis</subject><subject>Capsaicin - pharmacokinetics</subject><subject>Capsaicin - pharmacology</subject><subject>capsaicinoid</subject><subject>Carcinoma, Hepatocellular - drug therapy</subject><subject>Carcinoma, Hepatocellular - metabolism</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>chilli pepper</subject><subject>CSK Tyrosine-Protein Kinase - metabolism</subject><subject>Drug Design</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Hep G2 Cells</subject><subject>human liver carcinoma cells</subject><subject>Humans</subject><subject>Inhibitory Concentration 50</subject><subject>Lipids</subject><subject>Liver Neoplasms - drug therapy</subject><subject>Liver Neoplasms - metabolism</subject><subject>Models, Molecular</subject><subject>molecular docking</subject><subject>molecular dynamic simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanoparticles</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Particle Size</subject><subject>Proto-Oncogene Proteins c-abl - metabolism</subject><subject>Rats</subject><subject>Receptors, Vascular Endothelial Growth Factor - chemistry</subject><subject>Receptors, Vascular Endothelial Growth Factor - metabolism</subject><subject>Solubility</subject><subject>Tissue Distribution</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1rFTEUxYMo9rW6dyVZdtGx-ZzJuJOHVqHgRtchk49yS14yJpnig_7xzvBqV-LmBg6_cy45F6F3lHygRKlrynva9ZKpazNZOfgXaPcsvUQ7MsqhE0KJM3Re6z0hlCpGX6MzzinlkqodetybuRqwkLqYjfMO1xzB4QjzOpNJeTalgY2-fsTOV7hLV3iC7KC2AtPSIK8CJFwhgs34kJ2PkO6wSW6TH6CVjO2x5ZZ_r2vaEfsHExezGd-gV8HE6t8-vRfo55fPP_Zfu9vvN9_2n247K0jfupEYNhHuFLOhp0PohRyt58SMwXhCRsVGLqySVCgWguxJGIwyvCfOknHinl-gy1PuXPKvxdemD1Ctj9Ekn5eqmZBSCT4ItqLkhNqSay0-6LnAwZSjpkRvneutYL0VrE-dr5b3T-nLdPDu2fC35BW4OgGQZ32fl5LWz_4v7_If-HYKzZke9XpVSqieXeB_AIm-mww</recordid><startdate>20210226</startdate><enddate>20210226</enddate><creator>Kunjiappan, Selvaraj</creator><creator>Sankaranarayanan, Murugesan</creator><creator>Karan Kumar, Banoth</creator><creator>Pavadai, Parasuraman</creator><creator>Babkiewicz, Ewa</creator><creator>Maszczyk, Piotr</creator><creator>Glodkowska-Mrowka, Eliza</creator><creator>Arunachalam, Sankarganesh</creator><creator>Ram Kumar Pandian, Sureshbabu</creator><creator>Ravishankar, Vigneshwaran</creator><creator>Baskararaj, Suraj</creator><creator>Vellaichamy, Sivakumar</creator><creator>Arulmani, Lalitha</creator><creator>Panneerselvam, Theivendren</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1738-419X</orcidid><orcidid>https://orcid.org/0000-0002-6741-5118</orcidid><orcidid>https://orcid.org/0000-0003-2398-8448</orcidid><orcidid>https://orcid.org/0000-0002-8458-4546</orcidid><orcidid>https://orcid.org/0000-0002-9615-6944</orcidid><orcidid>https://orcid.org/0000-0002-5865-8425</orcidid><orcidid>https://orcid.org/0000-0002-8197-4688</orcidid></search><sort><creationdate>20210226</creationdate><title>Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation</title><author>Kunjiappan, Selvaraj ; Sankaranarayanan, Murugesan ; Karan Kumar, Banoth ; Pavadai, Parasuraman ; Babkiewicz, Ewa ; Maszczyk, Piotr ; Glodkowska-Mrowka, Eliza ; Arunachalam, Sankarganesh ; Ram Kumar Pandian, Sureshbabu ; Ravishankar, Vigneshwaran ; Baskararaj, Suraj ; Vellaichamy, Sivakumar ; Arulmani, Lalitha ; Panneerselvam, Theivendren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>8-methyl-N-vanillyl-6-nonenamide</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>apoptosis</topic><topic>Capsaicin - chemical synthesis</topic><topic>Capsaicin - pharmacokinetics</topic><topic>Capsaicin - pharmacology</topic><topic>capsaicinoid</topic><topic>Carcinoma, Hepatocellular - drug therapy</topic><topic>Carcinoma, Hepatocellular - metabolism</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>chilli pepper</topic><topic>CSK Tyrosine-Protein Kinase - metabolism</topic><topic>Drug Design</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Hep G2 Cells</topic><topic>human liver carcinoma cells</topic><topic>Humans</topic><topic>Inhibitory Concentration 50</topic><topic>Lipids</topic><topic>Liver Neoplasms - drug therapy</topic><topic>Liver Neoplasms - metabolism</topic><topic>Models, Molecular</topic><topic>molecular docking</topic><topic>molecular dynamic simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanoparticles</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Particle Size</topic><topic>Proto-Oncogene Proteins c-abl - metabolism</topic><topic>Rats</topic><topic>Receptors, Vascular Endothelial Growth Factor - chemistry</topic><topic>Receptors, Vascular Endothelial Growth Factor - metabolism</topic><topic>Solubility</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunjiappan, Selvaraj</creatorcontrib><creatorcontrib>Sankaranarayanan, Murugesan</creatorcontrib><creatorcontrib>Karan Kumar, Banoth</creatorcontrib><creatorcontrib>Pavadai, Parasuraman</creatorcontrib><creatorcontrib>Babkiewicz, Ewa</creatorcontrib><creatorcontrib>Maszczyk, Piotr</creatorcontrib><creatorcontrib>Glodkowska-Mrowka, Eliza</creatorcontrib><creatorcontrib>Arunachalam, Sankarganesh</creatorcontrib><creatorcontrib>Ram Kumar Pandian, Sureshbabu</creatorcontrib><creatorcontrib>Ravishankar, Vigneshwaran</creatorcontrib><creatorcontrib>Baskararaj, Suraj</creatorcontrib><creatorcontrib>Vellaichamy, Sivakumar</creatorcontrib><creatorcontrib>Arulmani, Lalitha</creatorcontrib><creatorcontrib>Panneerselvam, Theivendren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunjiappan, Selvaraj</au><au>Sankaranarayanan, Murugesan</au><au>Karan Kumar, Banoth</au><au>Pavadai, Parasuraman</au><au>Babkiewicz, Ewa</au><au>Maszczyk, Piotr</au><au>Glodkowska-Mrowka, Eliza</au><au>Arunachalam, Sankarganesh</au><au>Ram Kumar Pandian, Sureshbabu</au><au>Ravishankar, Vigneshwaran</au><au>Baskararaj, Suraj</au><au>Vellaichamy, Sivakumar</au><au>Arulmani, Lalitha</au><au>Panneerselvam, Theivendren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2021-02-26</date><risdate>2021</risdate><volume>32</volume><issue>9</issue><spage>095101</spage><epage>095101</epage><pages>095101-095101</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 g × ml−1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33113518</pmid><doi>10.1088/1361-6528/abc57e</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1738-419X</orcidid><orcidid>https://orcid.org/0000-0002-6741-5118</orcidid><orcidid>https://orcid.org/0000-0003-2398-8448</orcidid><orcidid>https://orcid.org/0000-0002-8458-4546</orcidid><orcidid>https://orcid.org/0000-0002-9615-6944</orcidid><orcidid>https://orcid.org/0000-0002-5865-8425</orcidid><orcidid>https://orcid.org/0000-0002-8197-4688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2021-02, Vol.32 (9), p.095101-095101
issn 0957-4484
1361-6528
language eng
recordid cdi_pubmed_primary_33113518
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects 8-methyl-N-vanillyl-6-nonenamide
Animals
Antineoplastic Agents - chemical synthesis
Antineoplastic Agents - pharmacokinetics
Antineoplastic Agents - pharmacology
apoptosis
Capsaicin - chemical synthesis
Capsaicin - pharmacokinetics
Capsaicin - pharmacology
capsaicinoid
Carcinoma, Hepatocellular - drug therapy
Carcinoma, Hepatocellular - metabolism
Cell Proliferation - drug effects
Cell Survival - drug effects
chilli pepper
CSK Tyrosine-Protein Kinase - metabolism
Drug Design
Gene Expression Regulation, Neoplastic - drug effects
Hep G2 Cells
human liver carcinoma cells
Humans
Inhibitory Concentration 50
Lipids
Liver Neoplasms - drug therapy
Liver Neoplasms - metabolism
Models, Molecular
molecular docking
molecular dynamic simulation
Molecular Dynamics Simulation
Nanoparticles
p38 Mitogen-Activated Protein Kinases - metabolism
Particle Size
Proto-Oncogene Proteins c-abl - metabolism
Rats
Receptors, Vascular Endothelial Growth Factor - chemistry
Receptors, Vascular Endothelial Growth Factor - metabolism
Solubility
Tissue Distribution
title Capsaicin-loaded solid lipid nanoparticles: design, biodistribution, in silico modeling and in vitro cytotoxicity evaluation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capsaicin-loaded%20solid%20lipid%20nanoparticles:%20design,%20biodistribution,%20in%20silico%20modeling%20and%20in%20vitro%20cytotoxicity%20evaluation&rft.jtitle=Nanotechnology&rft.au=Kunjiappan,%20Selvaraj&rft.date=2021-02-26&rft.volume=32&rft.issue=9&rft.spage=095101&rft.epage=095101&rft.pages=095101-095101&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/abc57e&rft_dat=%3Cproquest_pubme%3E2455843742%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-90a2b03d82cf617f6459ce30a9fae00982934c851482ff560f7a8a360dc09b3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455843742&rft_id=info:pmid/33113518&rfr_iscdi=true