Loading…

Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments

Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a h...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2021-01, Vol.21 (2), p.254-271
Main Authors: Fu, Yong-Qing, Pang, Hua-Feng, Torun, Hamdi, Tao, Ran, McHale, Glen, Reboud, Julien, Tao, Kai, Zhou, Jian, Luo, Jingting, Gibson, Desmond, Luo, Jikui, Hu, PingAn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443
cites cdi_FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443
container_end_page 271
container_issue 2
container_start_page 254
container_title Lab on a chip
container_volume 21
creator Fu, Yong-Qing
Pang, Hua-Feng
Torun, Hamdi
Tao, Ran
McHale, Glen
Reboud, Julien
Tao, Kai
Zhou, Jian
Luo, Jingting
Gibson, Desmond
Luo, Jikui
Hu, PingAn
description Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a high sensitivity, without significant loss of acoustic wave energy. On the other hand, longitudinal bulk waves or out-of-plane displacement waves (such as Rayleigh waves) enable efficient sampling functions and liquid manipulation. However, there are significant challenges in developing a lab-on-a-chip to efficiently generate multiple wave modes and perform both these functions on a single piezoelectric substrate, especially when a single crystalline orientation is available. This paper highlights the latest progress in the theories and techniques to deliver both sensing and microfluidic manipulation functions using engineered inclined-angled piezoelectric films, allowing for the simultaneous generation of longitudinal (or Rayleigh) and thickness-shear bulk (or shear-horizontal surface acoustic) waves. Challenges and theoretical constraints for generating various wave modes in the inclined films and techniques to efficiently produce inclined columnar and inclined crystalline piezoelectric films using sputtering deposition methods are presented. Applications of different wave modes in the inclined film-based lab-on-chips with multiple sensing and acoustofluidic functions are also discussed. Engineering orientations of inclined piezoelectric films allows simultaneous generation of multiple acoustic wave modes with multiple biosensing and acoustofluidic functions for an effective and integrated acoustic wave based lab-on-a-chip.
doi_str_mv 10.1039/d0lc00887g
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33337457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471458597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443</originalsourceid><addsrcrecordid>eNpd0c9rHCEUB3ApDd0k7aX3FqGXEJj0OeOszjFsfsJCLu15cPTN1uDoRGcC6X-Q_zqmu9lCvKj48enjS8hXBmcMquanAacBpBSbD-SQcVEVwGTzcb9uxIIcpXQPwGq-lJ_IospD8FockudLv7EeMVq_odZrlzeGhmjRT2qywScaejpa_BvQoZ6i1bS3bki0DzFfmHAT1ZSvKB3mNIXezdZYnajyhjrVFcEXqtB_7EjDiFtqPXX2ITuK_tHG4If8WPpMDnrlEn7Zzcfk99Xlr9VNsb67vl2drwvNGUwF72qjwSAH2SlRVlAJA7wujS6x6xlbskaDKmXNXpvFnqFQDYLk3VIKxXl1TE62dccYHmZMUzvYpNE55TG30JZcMF7LuhGZ_nhH78Mcff5dVhIaWUooszrdKh1DShH7dox2UPGpZdC-BtRewHr1L6DrjL_vSs7dgGZP3xLJ4NsWxKT3p_8Trl4Ap3GXOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480982802</pqid></control><display><type>article</type><title>Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments</title><source>Royal Society of Chemistry</source><creator>Fu, Yong-Qing ; Pang, Hua-Feng ; Torun, Hamdi ; Tao, Ran ; McHale, Glen ; Reboud, Julien ; Tao, Kai ; Zhou, Jian ; Luo, Jingting ; Gibson, Desmond ; Luo, Jikui ; Hu, PingAn</creator><creatorcontrib>Fu, Yong-Qing ; Pang, Hua-Feng ; Torun, Hamdi ; Tao, Ran ; McHale, Glen ; Reboud, Julien ; Tao, Kai ; Zhou, Jian ; Luo, Jingting ; Gibson, Desmond ; Luo, Jikui ; Hu, PingAn</creatorcontrib><description>Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a high sensitivity, without significant loss of acoustic wave energy. On the other hand, longitudinal bulk waves or out-of-plane displacement waves (such as Rayleigh waves) enable efficient sampling functions and liquid manipulation. However, there are significant challenges in developing a lab-on-a-chip to efficiently generate multiple wave modes and perform both these functions on a single piezoelectric substrate, especially when a single crystalline orientation is available. This paper highlights the latest progress in the theories and techniques to deliver both sensing and microfluidic manipulation functions using engineered inclined-angled piezoelectric films, allowing for the simultaneous generation of longitudinal (or Rayleigh) and thickness-shear bulk (or shear-horizontal surface acoustic) waves. Challenges and theoretical constraints for generating various wave modes in the inclined films and techniques to efficiently produce inclined columnar and inclined crystalline piezoelectric films using sputtering deposition methods are presented. Applications of different wave modes in the inclined film-based lab-on-chips with multiple sensing and acoustofluidic functions are also discussed. Engineering orientations of inclined piezoelectric films allows simultaneous generation of multiple acoustic wave modes with multiple biosensing and acoustofluidic functions for an effective and integrated acoustic wave based lab-on-a-chip.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d0lc00887g</identifier><identifier>PMID: 33337457</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acoustics ; Actuation ; Crystal structure ; Crystallinity ; Lab-on-a-chip ; Microfluidics ; Piezoelectric films ; Rayleigh waves ; S waves ; Shear ; Substrates ; Surface acoustic waves ; Thickness ; Wave power</subject><ispartof>Lab on a chip, 2021-01, Vol.21 (2), p.254-271</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443</citedby><cites>FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443</cites><orcidid>0000-0001-9797-4036 ; 0000-0001-5461-5930 ; 0000-0003-2851-0072 ; 0000-0003-1848-8561 ; 0000-0002-7882-286X ; 0000-0002-6879-8405 ; 0000-0003-3499-2733 ; 0000-0002-8519-7986 ; 0000-0003-3625-6449 ; 0000-0003-0310-2443 ; 0000-0003-4326-982X ; 0000-0001-6660-5190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33337457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Yong-Qing</creatorcontrib><creatorcontrib>Pang, Hua-Feng</creatorcontrib><creatorcontrib>Torun, Hamdi</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>McHale, Glen</creatorcontrib><creatorcontrib>Reboud, Julien</creatorcontrib><creatorcontrib>Tao, Kai</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Luo, Jingting</creatorcontrib><creatorcontrib>Gibson, Desmond</creatorcontrib><creatorcontrib>Luo, Jikui</creatorcontrib><creatorcontrib>Hu, PingAn</creatorcontrib><title>Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a high sensitivity, without significant loss of acoustic wave energy. On the other hand, longitudinal bulk waves or out-of-plane displacement waves (such as Rayleigh waves) enable efficient sampling functions and liquid manipulation. However, there are significant challenges in developing a lab-on-a-chip to efficiently generate multiple wave modes and perform both these functions on a single piezoelectric substrate, especially when a single crystalline orientation is available. This paper highlights the latest progress in the theories and techniques to deliver both sensing and microfluidic manipulation functions using engineered inclined-angled piezoelectric films, allowing for the simultaneous generation of longitudinal (or Rayleigh) and thickness-shear bulk (or shear-horizontal surface acoustic) waves. Challenges and theoretical constraints for generating various wave modes in the inclined films and techniques to efficiently produce inclined columnar and inclined crystalline piezoelectric films using sputtering deposition methods are presented. Applications of different wave modes in the inclined film-based lab-on-chips with multiple sensing and acoustofluidic functions are also discussed. Engineering orientations of inclined piezoelectric films allows simultaneous generation of multiple acoustic wave modes with multiple biosensing and acoustofluidic functions for an effective and integrated acoustic wave based lab-on-a-chip.</description><subject>Acoustics</subject><subject>Actuation</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Lab-on-a-chip</subject><subject>Microfluidics</subject><subject>Piezoelectric films</subject><subject>Rayleigh waves</subject><subject>S waves</subject><subject>Shear</subject><subject>Substrates</subject><subject>Surface acoustic waves</subject><subject>Thickness</subject><subject>Wave power</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0c9rHCEUB3ApDd0k7aX3FqGXEJj0OeOszjFsfsJCLu15cPTN1uDoRGcC6X-Q_zqmu9lCvKj48enjS8hXBmcMquanAacBpBSbD-SQcVEVwGTzcb9uxIIcpXQPwGq-lJ_IospD8FockudLv7EeMVq_odZrlzeGhmjRT2qywScaejpa_BvQoZ6i1bS3bki0DzFfmHAT1ZSvKB3mNIXezdZYnajyhjrVFcEXqtB_7EjDiFtqPXX2ITuK_tHG4If8WPpMDnrlEn7Zzcfk99Xlr9VNsb67vl2drwvNGUwF72qjwSAH2SlRVlAJA7wujS6x6xlbskaDKmXNXpvFnqFQDYLk3VIKxXl1TE62dccYHmZMUzvYpNE55TG30JZcMF7LuhGZ_nhH78Mcff5dVhIaWUooszrdKh1DShH7dox2UPGpZdC-BtRewHr1L6DrjL_vSs7dgGZP3xLJ4NsWxKT3p_8Trl4Ap3GXOA</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Fu, Yong-Qing</creator><creator>Pang, Hua-Feng</creator><creator>Torun, Hamdi</creator><creator>Tao, Ran</creator><creator>McHale, Glen</creator><creator>Reboud, Julien</creator><creator>Tao, Kai</creator><creator>Zhou, Jian</creator><creator>Luo, Jingting</creator><creator>Gibson, Desmond</creator><creator>Luo, Jikui</creator><creator>Hu, PingAn</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9797-4036</orcidid><orcidid>https://orcid.org/0000-0001-5461-5930</orcidid><orcidid>https://orcid.org/0000-0003-2851-0072</orcidid><orcidid>https://orcid.org/0000-0003-1848-8561</orcidid><orcidid>https://orcid.org/0000-0002-7882-286X</orcidid><orcidid>https://orcid.org/0000-0002-6879-8405</orcidid><orcidid>https://orcid.org/0000-0003-3499-2733</orcidid><orcidid>https://orcid.org/0000-0002-8519-7986</orcidid><orcidid>https://orcid.org/0000-0003-3625-6449</orcidid><orcidid>https://orcid.org/0000-0003-0310-2443</orcidid><orcidid>https://orcid.org/0000-0003-4326-982X</orcidid><orcidid>https://orcid.org/0000-0001-6660-5190</orcidid></search><sort><creationdate>20210121</creationdate><title>Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments</title><author>Fu, Yong-Qing ; Pang, Hua-Feng ; Torun, Hamdi ; Tao, Ran ; McHale, Glen ; Reboud, Julien ; Tao, Kai ; Zhou, Jian ; Luo, Jingting ; Gibson, Desmond ; Luo, Jikui ; Hu, PingAn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Actuation</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Lab-on-a-chip</topic><topic>Microfluidics</topic><topic>Piezoelectric films</topic><topic>Rayleigh waves</topic><topic>S waves</topic><topic>Shear</topic><topic>Substrates</topic><topic>Surface acoustic waves</topic><topic>Thickness</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yong-Qing</creatorcontrib><creatorcontrib>Pang, Hua-Feng</creatorcontrib><creatorcontrib>Torun, Hamdi</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>McHale, Glen</creatorcontrib><creatorcontrib>Reboud, Julien</creatorcontrib><creatorcontrib>Tao, Kai</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Luo, Jingting</creatorcontrib><creatorcontrib>Gibson, Desmond</creatorcontrib><creatorcontrib>Luo, Jikui</creatorcontrib><creatorcontrib>Hu, PingAn</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yong-Qing</au><au>Pang, Hua-Feng</au><au>Torun, Hamdi</au><au>Tao, Ran</au><au>McHale, Glen</au><au>Reboud, Julien</au><au>Tao, Kai</au><au>Zhou, Jian</au><au>Luo, Jingting</au><au>Gibson, Desmond</au><au>Luo, Jikui</au><au>Hu, PingAn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2021-01-21</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>254</spage><epage>271</epage><pages>254-271</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a high sensitivity, without significant loss of acoustic wave energy. On the other hand, longitudinal bulk waves or out-of-plane displacement waves (such as Rayleigh waves) enable efficient sampling functions and liquid manipulation. However, there are significant challenges in developing a lab-on-a-chip to efficiently generate multiple wave modes and perform both these functions on a single piezoelectric substrate, especially when a single crystalline orientation is available. This paper highlights the latest progress in the theories and techniques to deliver both sensing and microfluidic manipulation functions using engineered inclined-angled piezoelectric films, allowing for the simultaneous generation of longitudinal (or Rayleigh) and thickness-shear bulk (or shear-horizontal surface acoustic) waves. Challenges and theoretical constraints for generating various wave modes in the inclined films and techniques to efficiently produce inclined columnar and inclined crystalline piezoelectric films using sputtering deposition methods are presented. Applications of different wave modes in the inclined film-based lab-on-chips with multiple sensing and acoustofluidic functions are also discussed. Engineering orientations of inclined piezoelectric films allows simultaneous generation of multiple acoustic wave modes with multiple biosensing and acoustofluidic functions for an effective and integrated acoustic wave based lab-on-a-chip.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33337457</pmid><doi>10.1039/d0lc00887g</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9797-4036</orcidid><orcidid>https://orcid.org/0000-0001-5461-5930</orcidid><orcidid>https://orcid.org/0000-0003-2851-0072</orcidid><orcidid>https://orcid.org/0000-0003-1848-8561</orcidid><orcidid>https://orcid.org/0000-0002-7882-286X</orcidid><orcidid>https://orcid.org/0000-0002-6879-8405</orcidid><orcidid>https://orcid.org/0000-0003-3499-2733</orcidid><orcidid>https://orcid.org/0000-0002-8519-7986</orcidid><orcidid>https://orcid.org/0000-0003-3625-6449</orcidid><orcidid>https://orcid.org/0000-0003-0310-2443</orcidid><orcidid>https://orcid.org/0000-0003-4326-982X</orcidid><orcidid>https://orcid.org/0000-0001-6660-5190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2021-01, Vol.21 (2), p.254-271
issn 1473-0197
1473-0189
language eng
recordid cdi_pubmed_primary_33337457
source Royal Society of Chemistry
subjects Acoustics
Actuation
Crystal structure
Crystallinity
Lab-on-a-chip
Microfluidics
Piezoelectric films
Rayleigh waves
S waves
Shear
Substrates
Surface acoustic waves
Thickness
Wave power
title Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20inclined%20orientations%20of%20piezoelectric%20films%20for%20integrated%20acoustofluidics%20and%20lab-on-a-chip%20operated%20in%20liquid%20environments&rft.jtitle=Lab%20on%20a%20chip&rft.au=Fu,%20Yong-Qing&rft.date=2021-01-21&rft.volume=21&rft.issue=2&rft.spage=254&rft.epage=271&rft.pages=254-271&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d0lc00887g&rft_dat=%3Cproquest_pubme%3E2471458597%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480982802&rft_id=info:pmid/33337457&rfr_iscdi=true