Loading…
Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments
Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a h...
Saved in:
Published in: | Lab on a chip 2021-01, Vol.21 (2), p.254-271 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443 |
container_end_page | 271 |
container_issue | 2 |
container_start_page | 254 |
container_title | Lab on a chip |
container_volume | 21 |
creator | Fu, Yong-Qing Pang, Hua-Feng Torun, Hamdi Tao, Ran McHale, Glen Reboud, Julien Tao, Kai Zhou, Jian Luo, Jingting Gibson, Desmond Luo, Jikui Hu, PingAn |
description | Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a high sensitivity, without significant loss of acoustic wave energy. On the other hand, longitudinal bulk waves or out-of-plane displacement waves (such as Rayleigh waves) enable efficient sampling functions and liquid manipulation. However, there are significant challenges in developing a lab-on-a-chip to efficiently generate multiple wave modes and perform both these functions on a single piezoelectric substrate, especially when a single crystalline orientation is available. This paper highlights the latest progress in the theories and techniques to deliver both sensing and microfluidic manipulation functions using engineered inclined-angled piezoelectric films, allowing for the simultaneous generation of longitudinal (or Rayleigh) and thickness-shear bulk (or shear-horizontal surface acoustic) waves. Challenges and theoretical constraints for generating various wave modes in the inclined films and techniques to efficiently produce inclined columnar and inclined crystalline piezoelectric films using sputtering deposition methods are presented. Applications of different wave modes in the inclined film-based lab-on-chips with multiple sensing and acoustofluidic functions are also discussed.
Engineering orientations of inclined piezoelectric films allows simultaneous generation of multiple acoustic wave modes with multiple biosensing and acoustofluidic functions for an effective and integrated acoustic wave based lab-on-a-chip. |
doi_str_mv | 10.1039/d0lc00887g |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33337457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471458597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443</originalsourceid><addsrcrecordid>eNpd0c9rHCEUB3ApDd0k7aX3FqGXEJj0OeOszjFsfsJCLu15cPTN1uDoRGcC6X-Q_zqmu9lCvKj48enjS8hXBmcMquanAacBpBSbD-SQcVEVwGTzcb9uxIIcpXQPwGq-lJ_IospD8FockudLv7EeMVq_odZrlzeGhmjRT2qywScaejpa_BvQoZ6i1bS3bki0DzFfmHAT1ZSvKB3mNIXezdZYnajyhjrVFcEXqtB_7EjDiFtqPXX2ITuK_tHG4If8WPpMDnrlEn7Zzcfk99Xlr9VNsb67vl2drwvNGUwF72qjwSAH2SlRVlAJA7wujS6x6xlbskaDKmXNXpvFnqFQDYLk3VIKxXl1TE62dccYHmZMUzvYpNE55TG30JZcMF7LuhGZ_nhH78Mcff5dVhIaWUooszrdKh1DShH7dox2UPGpZdC-BtRewHr1L6DrjL_vSs7dgGZP3xLJ4NsWxKT3p_8Trl4Ap3GXOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480982802</pqid></control><display><type>article</type><title>Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments</title><source>Royal Society of Chemistry</source><creator>Fu, Yong-Qing ; Pang, Hua-Feng ; Torun, Hamdi ; Tao, Ran ; McHale, Glen ; Reboud, Julien ; Tao, Kai ; Zhou, Jian ; Luo, Jingting ; Gibson, Desmond ; Luo, Jikui ; Hu, PingAn</creator><creatorcontrib>Fu, Yong-Qing ; Pang, Hua-Feng ; Torun, Hamdi ; Tao, Ran ; McHale, Glen ; Reboud, Julien ; Tao, Kai ; Zhou, Jian ; Luo, Jingting ; Gibson, Desmond ; Luo, Jikui ; Hu, PingAn</creatorcontrib><description>Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a high sensitivity, without significant loss of acoustic wave energy. On the other hand, longitudinal bulk waves or out-of-plane displacement waves (such as Rayleigh waves) enable efficient sampling functions and liquid manipulation. However, there are significant challenges in developing a lab-on-a-chip to efficiently generate multiple wave modes and perform both these functions on a single piezoelectric substrate, especially when a single crystalline orientation is available. This paper highlights the latest progress in the theories and techniques to deliver both sensing and microfluidic manipulation functions using engineered inclined-angled piezoelectric films, allowing for the simultaneous generation of longitudinal (or Rayleigh) and thickness-shear bulk (or shear-horizontal surface acoustic) waves. Challenges and theoretical constraints for generating various wave modes in the inclined films and techniques to efficiently produce inclined columnar and inclined crystalline piezoelectric films using sputtering deposition methods are presented. Applications of different wave modes in the inclined film-based lab-on-chips with multiple sensing and acoustofluidic functions are also discussed.
Engineering orientations of inclined piezoelectric films allows simultaneous generation of multiple acoustic wave modes with multiple biosensing and acoustofluidic functions for an effective and integrated acoustic wave based lab-on-a-chip.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d0lc00887g</identifier><identifier>PMID: 33337457</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Acoustics ; Actuation ; Crystal structure ; Crystallinity ; Lab-on-a-chip ; Microfluidics ; Piezoelectric films ; Rayleigh waves ; S waves ; Shear ; Substrates ; Surface acoustic waves ; Thickness ; Wave power</subject><ispartof>Lab on a chip, 2021-01, Vol.21 (2), p.254-271</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443</citedby><cites>FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443</cites><orcidid>0000-0001-9797-4036 ; 0000-0001-5461-5930 ; 0000-0003-2851-0072 ; 0000-0003-1848-8561 ; 0000-0002-7882-286X ; 0000-0002-6879-8405 ; 0000-0003-3499-2733 ; 0000-0002-8519-7986 ; 0000-0003-3625-6449 ; 0000-0003-0310-2443 ; 0000-0003-4326-982X ; 0000-0001-6660-5190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33337457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Yong-Qing</creatorcontrib><creatorcontrib>Pang, Hua-Feng</creatorcontrib><creatorcontrib>Torun, Hamdi</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>McHale, Glen</creatorcontrib><creatorcontrib>Reboud, Julien</creatorcontrib><creatorcontrib>Tao, Kai</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Luo, Jingting</creatorcontrib><creatorcontrib>Gibson, Desmond</creatorcontrib><creatorcontrib>Luo, Jikui</creatorcontrib><creatorcontrib>Hu, PingAn</creatorcontrib><title>Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a high sensitivity, without significant loss of acoustic wave energy. On the other hand, longitudinal bulk waves or out-of-plane displacement waves (such as Rayleigh waves) enable efficient sampling functions and liquid manipulation. However, there are significant challenges in developing a lab-on-a-chip to efficiently generate multiple wave modes and perform both these functions on a single piezoelectric substrate, especially when a single crystalline orientation is available. This paper highlights the latest progress in the theories and techniques to deliver both sensing and microfluidic manipulation functions using engineered inclined-angled piezoelectric films, allowing for the simultaneous generation of longitudinal (or Rayleigh) and thickness-shear bulk (or shear-horizontal surface acoustic) waves. Challenges and theoretical constraints for generating various wave modes in the inclined films and techniques to efficiently produce inclined columnar and inclined crystalline piezoelectric films using sputtering deposition methods are presented. Applications of different wave modes in the inclined film-based lab-on-chips with multiple sensing and acoustofluidic functions are also discussed.
Engineering orientations of inclined piezoelectric films allows simultaneous generation of multiple acoustic wave modes with multiple biosensing and acoustofluidic functions for an effective and integrated acoustic wave based lab-on-a-chip.</description><subject>Acoustics</subject><subject>Actuation</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Lab-on-a-chip</subject><subject>Microfluidics</subject><subject>Piezoelectric films</subject><subject>Rayleigh waves</subject><subject>S waves</subject><subject>Shear</subject><subject>Substrates</subject><subject>Surface acoustic waves</subject><subject>Thickness</subject><subject>Wave power</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0c9rHCEUB3ApDd0k7aX3FqGXEJj0OeOszjFsfsJCLu15cPTN1uDoRGcC6X-Q_zqmu9lCvKj48enjS8hXBmcMquanAacBpBSbD-SQcVEVwGTzcb9uxIIcpXQPwGq-lJ_IospD8FockudLv7EeMVq_odZrlzeGhmjRT2qywScaejpa_BvQoZ6i1bS3bki0DzFfmHAT1ZSvKB3mNIXezdZYnajyhjrVFcEXqtB_7EjDiFtqPXX2ITuK_tHG4If8WPpMDnrlEn7Zzcfk99Xlr9VNsb67vl2drwvNGUwF72qjwSAH2SlRVlAJA7wujS6x6xlbskaDKmXNXpvFnqFQDYLk3VIKxXl1TE62dccYHmZMUzvYpNE55TG30JZcMF7LuhGZ_nhH78Mcff5dVhIaWUooszrdKh1DShH7dox2UPGpZdC-BtRewHr1L6DrjL_vSs7dgGZP3xLJ4NsWxKT3p_8Trl4Ap3GXOA</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Fu, Yong-Qing</creator><creator>Pang, Hua-Feng</creator><creator>Torun, Hamdi</creator><creator>Tao, Ran</creator><creator>McHale, Glen</creator><creator>Reboud, Julien</creator><creator>Tao, Kai</creator><creator>Zhou, Jian</creator><creator>Luo, Jingting</creator><creator>Gibson, Desmond</creator><creator>Luo, Jikui</creator><creator>Hu, PingAn</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9797-4036</orcidid><orcidid>https://orcid.org/0000-0001-5461-5930</orcidid><orcidid>https://orcid.org/0000-0003-2851-0072</orcidid><orcidid>https://orcid.org/0000-0003-1848-8561</orcidid><orcidid>https://orcid.org/0000-0002-7882-286X</orcidid><orcidid>https://orcid.org/0000-0002-6879-8405</orcidid><orcidid>https://orcid.org/0000-0003-3499-2733</orcidid><orcidid>https://orcid.org/0000-0002-8519-7986</orcidid><orcidid>https://orcid.org/0000-0003-3625-6449</orcidid><orcidid>https://orcid.org/0000-0003-0310-2443</orcidid><orcidid>https://orcid.org/0000-0003-4326-982X</orcidid><orcidid>https://orcid.org/0000-0001-6660-5190</orcidid></search><sort><creationdate>20210121</creationdate><title>Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments</title><author>Fu, Yong-Qing ; Pang, Hua-Feng ; Torun, Hamdi ; Tao, Ran ; McHale, Glen ; Reboud, Julien ; Tao, Kai ; Zhou, Jian ; Luo, Jingting ; Gibson, Desmond ; Luo, Jikui ; Hu, PingAn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Actuation</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Lab-on-a-chip</topic><topic>Microfluidics</topic><topic>Piezoelectric films</topic><topic>Rayleigh waves</topic><topic>S waves</topic><topic>Shear</topic><topic>Substrates</topic><topic>Surface acoustic waves</topic><topic>Thickness</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Yong-Qing</creatorcontrib><creatorcontrib>Pang, Hua-Feng</creatorcontrib><creatorcontrib>Torun, Hamdi</creatorcontrib><creatorcontrib>Tao, Ran</creatorcontrib><creatorcontrib>McHale, Glen</creatorcontrib><creatorcontrib>Reboud, Julien</creatorcontrib><creatorcontrib>Tao, Kai</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Luo, Jingting</creatorcontrib><creatorcontrib>Gibson, Desmond</creatorcontrib><creatorcontrib>Luo, Jikui</creatorcontrib><creatorcontrib>Hu, PingAn</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Yong-Qing</au><au>Pang, Hua-Feng</au><au>Torun, Hamdi</au><au>Tao, Ran</au><au>McHale, Glen</au><au>Reboud, Julien</au><au>Tao, Kai</au><au>Zhou, Jian</au><au>Luo, Jingting</au><au>Gibson, Desmond</au><au>Luo, Jikui</au><au>Hu, PingAn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2021-01-21</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>254</spage><epage>271</epage><pages>254-271</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Different acoustic wave modes are required for effective implementation of biosensing and liquid actuation functions in an acoustic wave-based lab-on-a-chip. For efficient sensing in liquids, shear waves (either a thickness-shear bulk wave or a shear-horizontal surface acoustic wave) can achieve a high sensitivity, without significant loss of acoustic wave energy. On the other hand, longitudinal bulk waves or out-of-plane displacement waves (such as Rayleigh waves) enable efficient sampling functions and liquid manipulation. However, there are significant challenges in developing a lab-on-a-chip to efficiently generate multiple wave modes and perform both these functions on a single piezoelectric substrate, especially when a single crystalline orientation is available. This paper highlights the latest progress in the theories and techniques to deliver both sensing and microfluidic manipulation functions using engineered inclined-angled piezoelectric films, allowing for the simultaneous generation of longitudinal (or Rayleigh) and thickness-shear bulk (or shear-horizontal surface acoustic) waves. Challenges and theoretical constraints for generating various wave modes in the inclined films and techniques to efficiently produce inclined columnar and inclined crystalline piezoelectric films using sputtering deposition methods are presented. Applications of different wave modes in the inclined film-based lab-on-chips with multiple sensing and acoustofluidic functions are also discussed.
Engineering orientations of inclined piezoelectric films allows simultaneous generation of multiple acoustic wave modes with multiple biosensing and acoustofluidic functions for an effective and integrated acoustic wave based lab-on-a-chip.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>33337457</pmid><doi>10.1039/d0lc00887g</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9797-4036</orcidid><orcidid>https://orcid.org/0000-0001-5461-5930</orcidid><orcidid>https://orcid.org/0000-0003-2851-0072</orcidid><orcidid>https://orcid.org/0000-0003-1848-8561</orcidid><orcidid>https://orcid.org/0000-0002-7882-286X</orcidid><orcidid>https://orcid.org/0000-0002-6879-8405</orcidid><orcidid>https://orcid.org/0000-0003-3499-2733</orcidid><orcidid>https://orcid.org/0000-0002-8519-7986</orcidid><orcidid>https://orcid.org/0000-0003-3625-6449</orcidid><orcidid>https://orcid.org/0000-0003-0310-2443</orcidid><orcidid>https://orcid.org/0000-0003-4326-982X</orcidid><orcidid>https://orcid.org/0000-0001-6660-5190</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2021-01, Vol.21 (2), p.254-271 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_pubmed_primary_33337457 |
source | Royal Society of Chemistry |
subjects | Acoustics Actuation Crystal structure Crystallinity Lab-on-a-chip Microfluidics Piezoelectric films Rayleigh waves S waves Shear Substrates Surface acoustic waves Thickness Wave power |
title | Engineering inclined orientations of piezoelectric films for integrated acoustofluidics and lab-on-a-chip operated in liquid environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20inclined%20orientations%20of%20piezoelectric%20films%20for%20integrated%20acoustofluidics%20and%20lab-on-a-chip%20operated%20in%20liquid%20environments&rft.jtitle=Lab%20on%20a%20chip&rft.au=Fu,%20Yong-Qing&rft.date=2021-01-21&rft.volume=21&rft.issue=2&rft.spage=254&rft.epage=271&rft.pages=254-271&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d0lc00887g&rft_dat=%3Cproquest_pubme%3E2471458597%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-4b5dc0de408ba723037d0452dc2ebf11619c0a28511546ef1e7a9e084b687a443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480982802&rft_id=info:pmid/33337457&rfr_iscdi=true |