Loading…
MOF-derived porous carbon nanofibers wrapping Sn nanoparticles as flexible anodes for lithium/sodium ion batteries
Facile synthesis of flexible electrodes with high reversible capacity plays a key role in meeting the ever-increasing demand for flexible batteries. Herein, we incorporated Sn-based metal-organic framework (Sn-MOF) templates into crosslinked one-dimensional carbon nanofibers (CNFs) using an electros...
Saved in:
Published in: | Nanotechnology 2021-04, Vol.32 (16), p.165401-165401 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Facile synthesis of flexible electrodes with high reversible capacity plays a key role in meeting the ever-increasing demand for flexible batteries. Herein, we incorporated Sn-based metal-organic framework (Sn-MOF) templates into crosslinked one-dimensional carbon nanofibers (CNFs) using an electrospinning strategy and obtained a hierarchical porous film (Sn@C@CNF) after a carbothermal reduction reaction. Merits of this modification strategy and its mechanism in improving the electrochemical performance of Sn nanoparticles (NPs) were revealed. Electrospun CNFs substrate ensured a highly conductive skeleton and excellent mechanical toughness, making Sn@C@CNF a self-supported binder-free electrode. Serving as a self-sacrificing template, Sn-MOF provided Sn NPs and derived into porous structures on CNFs after pyrolysis. The hierarchical porous structure of the carbon substrate was beneficial to enhancing the Li
/Na
storage of the active materials, and the carbon wrappings derived from polyacrylonitrile (PAN) nanofibers and the MOF skeleton could jointly accommodate the violent volume variation during cycling, enabling Sn@C@CNF to have excellent cycle stability. The Sn@C@CNF anode exhibited a stable discharge specific capacity of 610.8 mAh g
under 200 mA g
for 180 cycles in lithium ion batteries (LIBs) and 360.5 mAh g
under 100 mA g
after 100 cycles in sodium ion batteries (SIBs). As a flexible electrode, Sn@C@CNF demonstrated a stable electromechanical response to repeated 'bending-releasing' cycles and excellent electrochemical performance when assembled in a soft-pack half-LIB. This strategy provided promising candidates of active materials and fabrication methods for advanced flexible batteries. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/abd8f8 |