Loading…
Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning
In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all...
Saved in:
Published in: | The Journal of chemical physics 2021-01, Vol.154 (4), p.044110-044110 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the iteration scheme associated with single reference coupled cluster theory has been analyzed using nonlinear dynamics. The phase space analysis indicates the presence of a few significant cluster amplitudes, mostly involving valence excitations, that dictate the dynamics, while all other amplitudes are enslaved. Starting with a few initial iterations to establish the inter-relationship among the cluster amplitudes, a supervised machine learning scheme with a polynomial kernel ridge regression model has been employed to express each of the enslaved amplitudes uniquely in terms of the former set of amplitudes. The subsequent coupled cluster iterations are restricted solely to determine those significant excitations, and the enslaved amplitudes are determined through the already established functional mapping. We will show that our hybrid scheme leads to a significant reduction in the computational time without sacrificing the accuracy. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0037090 |