Loading…

Visual Analysis of Multi-Parameter Distributions Across Ensembles of 3D Fields

For an ensemble of 3D multi-parameter fields, we present a visual analytics workflow to analyse whether and which parts of a selected multi-parameter distribution is present in all ensemble members. Supported by a parallel coordinate plot, a multi-parameter brush is applied to all ensemble members t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2022-10, Vol.28 (10), p.3530-3545
Main Authors: Kumpf, Alexander, Stumpfegger, Josef, Hartl, Patrick Fabian, Westermann, Rudiger
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-16bd70cccb1e4a94568130c46b8df47d7c3635f92b3df273cf5d0d162d5b61603
cites cdi_FETCH-LOGICAL-c349t-16bd70cccb1e4a94568130c46b8df47d7c3635f92b3df273cf5d0d162d5b61603
container_end_page 3545
container_issue 10
container_start_page 3530
container_title IEEE transactions on visualization and computer graphics
container_volume 28
creator Kumpf, Alexander
Stumpfegger, Josef
Hartl, Patrick Fabian
Westermann, Rudiger
description For an ensemble of 3D multi-parameter fields, we present a visual analytics workflow to analyse whether and which parts of a selected multi-parameter distribution is present in all ensemble members. Supported by a parallel coordinate plot, a multi-parameter brush is applied to all ensemble members to select data points with similar multi-parameter distribution. By a combination of spatial sub-division and a covariance analysis of partitioned sub-sets of data points, a tight partition in multi-parameter space with reduced number of selected data points is obtained. To assess the representativeness of the selected multi-parameter distribution across the ensemble, we propose a novel extension of violin plots that can show multiple parameter distributions simultaneously. We investigate the visual design that effectively conveys (dis-)similarities in multi-parameter distributions, and demonstrate that users can quickly comprehend parameter-specific differences regarding distribution shape and representativeness from a side-by-side view of these plots. In a 3D spatial view, users can analyse and compare the spatial distribution of selected data points in different ensemble members via interval-based isosurface raycasting. In two real-world application cases we show how our approach is used to analyse the multi-parameter distributions across an ensemble of 3D fields.
doi_str_mv 10.1109/TVCG.2021.3061925
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33625986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9362264</ieee_id><sourcerecordid>2493451550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-16bd70cccb1e4a94568130c46b8df47d7c3635f92b3df273cf5d0d162d5b61603</originalsourceid><addsrcrecordid>eNpdkMtKw0AUhgdRbK0-gAgScOMmdc7cklmW3hTqZVG7DcnMBKbkUmeSRd_epK1duDoHzvf_cD6E7gGPAbB8WW-myzHBBMYUC5CEX6AhSAYh5lhcdjuOopAIIgboxvstxsBYLK_RgFJBuIzFEH1srG_TIphUabH31gd1Hry3RWPDr9SlpWmMC2bWN85mbWPrygcT5Wrvg3nlTZkV5pCgs2BhTaH9LbrK08Kbu9Mcoe_FfD19DVefy7fpZBUqymQTgsh0hJVSGRiWSsZFDBQrJrJY5yzSkaKC8lySjOqcRFTlXGMNgmieCRCYjtDzsXfn6p_W-CYprVemKNLK1K1PCJOUceC8R5_-odu6dd27HRVhCVxQRjsKjtThO2fyZOdsmbp9AjjpZSe97KSXnZxkd5nHU3OblUafE392O-DhCFhjzPksuzMRjP4C1-yBcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709156343</pqid></control><display><type>article</type><title>Visual Analysis of Multi-Parameter Distributions Across Ensembles of 3D Fields</title><source>IEEE Xplore (Online service)</source><creator>Kumpf, Alexander ; Stumpfegger, Josef ; Hartl, Patrick Fabian ; Westermann, Rudiger</creator><creatorcontrib>Kumpf, Alexander ; Stumpfegger, Josef ; Hartl, Patrick Fabian ; Westermann, Rudiger</creatorcontrib><description>For an ensemble of 3D multi-parameter fields, we present a visual analytics workflow to analyse whether and which parts of a selected multi-parameter distribution is present in all ensemble members. Supported by a parallel coordinate plot, a multi-parameter brush is applied to all ensemble members to select data points with similar multi-parameter distribution. By a combination of spatial sub-division and a covariance analysis of partitioned sub-sets of data points, a tight partition in multi-parameter space with reduced number of selected data points is obtained. To assess the representativeness of the selected multi-parameter distribution across the ensemble, we propose a novel extension of violin plots that can show multiple parameter distributions simultaneously. We investigate the visual design that effectively conveys (dis-)similarities in multi-parameter distributions, and demonstrate that users can quickly comprehend parameter-specific differences regarding distribution shape and representativeness from a side-by-side view of these plots. In a 3D spatial view, users can analyse and compare the spatial distribution of selected data points in different ensemble members via interval-based isosurface raycasting. In two real-world application cases we show how our approach is used to analyse the multi-parameter distributions across an ensemble of 3D fields.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2021.3061925</identifier><identifier>PMID: 33625986</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3D rendering ; Data points ; Data visualization ; distribution comparison ; Ensemble visualization ; Isosurfaces ; Mathematical analysis ; multi-parameter visualization ; parallel coordinates ; Parameters ; Rendering (computer graphics) ; Spatial distribution ; Three-dimensional displays ; Uncertainty ; Visual analytics ; Workflow</subject><ispartof>IEEE transactions on visualization and computer graphics, 2022-10, Vol.28 (10), p.3530-3545</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-16bd70cccb1e4a94568130c46b8df47d7c3635f92b3df273cf5d0d162d5b61603</citedby><cites>FETCH-LOGICAL-c349t-16bd70cccb1e4a94568130c46b8df47d7c3635f92b3df273cf5d0d162d5b61603</cites><orcidid>0000-0002-3394-0731 ; 0000-0002-4009-3980 ; 0000-0002-2553-184X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9362264$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33625986$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumpf, Alexander</creatorcontrib><creatorcontrib>Stumpfegger, Josef</creatorcontrib><creatorcontrib>Hartl, Patrick Fabian</creatorcontrib><creatorcontrib>Westermann, Rudiger</creatorcontrib><title>Visual Analysis of Multi-Parameter Distributions Across Ensembles of 3D Fields</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>For an ensemble of 3D multi-parameter fields, we present a visual analytics workflow to analyse whether and which parts of a selected multi-parameter distribution is present in all ensemble members. Supported by a parallel coordinate plot, a multi-parameter brush is applied to all ensemble members to select data points with similar multi-parameter distribution. By a combination of spatial sub-division and a covariance analysis of partitioned sub-sets of data points, a tight partition in multi-parameter space with reduced number of selected data points is obtained. To assess the representativeness of the selected multi-parameter distribution across the ensemble, we propose a novel extension of violin plots that can show multiple parameter distributions simultaneously. We investigate the visual design that effectively conveys (dis-)similarities in multi-parameter distributions, and demonstrate that users can quickly comprehend parameter-specific differences regarding distribution shape and representativeness from a side-by-side view of these plots. In a 3D spatial view, users can analyse and compare the spatial distribution of selected data points in different ensemble members via interval-based isosurface raycasting. In two real-world application cases we show how our approach is used to analyse the multi-parameter distributions across an ensemble of 3D fields.</description><subject>3D rendering</subject><subject>Data points</subject><subject>Data visualization</subject><subject>distribution comparison</subject><subject>Ensemble visualization</subject><subject>Isosurfaces</subject><subject>Mathematical analysis</subject><subject>multi-parameter visualization</subject><subject>parallel coordinates</subject><subject>Parameters</subject><subject>Rendering (computer graphics)</subject><subject>Spatial distribution</subject><subject>Three-dimensional displays</subject><subject>Uncertainty</subject><subject>Visual analytics</subject><subject>Workflow</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKw0AUhgdRbK0-gAgScOMmdc7cklmW3hTqZVG7DcnMBKbkUmeSRd_epK1duDoHzvf_cD6E7gGPAbB8WW-myzHBBMYUC5CEX6AhSAYh5lhcdjuOopAIIgboxvstxsBYLK_RgFJBuIzFEH1srG_TIphUabH31gd1Hry3RWPDr9SlpWmMC2bWN85mbWPrygcT5Wrvg3nlTZkV5pCgs2BhTaH9LbrK08Kbu9Mcoe_FfD19DVefy7fpZBUqymQTgsh0hJVSGRiWSsZFDBQrJrJY5yzSkaKC8lySjOqcRFTlXGMNgmieCRCYjtDzsXfn6p_W-CYprVemKNLK1K1PCJOUceC8R5_-odu6dd27HRVhCVxQRjsKjtThO2fyZOdsmbp9AjjpZSe97KSXnZxkd5nHU3OblUafE392O-DhCFhjzPksuzMRjP4C1-yBcA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Kumpf, Alexander</creator><creator>Stumpfegger, Josef</creator><creator>Hartl, Patrick Fabian</creator><creator>Westermann, Rudiger</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3394-0731</orcidid><orcidid>https://orcid.org/0000-0002-4009-3980</orcidid><orcidid>https://orcid.org/0000-0002-2553-184X</orcidid></search><sort><creationdate>20221001</creationdate><title>Visual Analysis of Multi-Parameter Distributions Across Ensembles of 3D Fields</title><author>Kumpf, Alexander ; Stumpfegger, Josef ; Hartl, Patrick Fabian ; Westermann, Rudiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-16bd70cccb1e4a94568130c46b8df47d7c3635f92b3df273cf5d0d162d5b61603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D rendering</topic><topic>Data points</topic><topic>Data visualization</topic><topic>distribution comparison</topic><topic>Ensemble visualization</topic><topic>Isosurfaces</topic><topic>Mathematical analysis</topic><topic>multi-parameter visualization</topic><topic>parallel coordinates</topic><topic>Parameters</topic><topic>Rendering (computer graphics)</topic><topic>Spatial distribution</topic><topic>Three-dimensional displays</topic><topic>Uncertainty</topic><topic>Visual analytics</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumpf, Alexander</creatorcontrib><creatorcontrib>Stumpfegger, Josef</creatorcontrib><creatorcontrib>Hartl, Patrick Fabian</creatorcontrib><creatorcontrib>Westermann, Rudiger</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumpf, Alexander</au><au>Stumpfegger, Josef</au><au>Hartl, Patrick Fabian</au><au>Westermann, Rudiger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Analysis of Multi-Parameter Distributions Across Ensembles of 3D Fields</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>28</volume><issue>10</issue><spage>3530</spage><epage>3545</epage><pages>3530-3545</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>For an ensemble of 3D multi-parameter fields, we present a visual analytics workflow to analyse whether and which parts of a selected multi-parameter distribution is present in all ensemble members. Supported by a parallel coordinate plot, a multi-parameter brush is applied to all ensemble members to select data points with similar multi-parameter distribution. By a combination of spatial sub-division and a covariance analysis of partitioned sub-sets of data points, a tight partition in multi-parameter space with reduced number of selected data points is obtained. To assess the representativeness of the selected multi-parameter distribution across the ensemble, we propose a novel extension of violin plots that can show multiple parameter distributions simultaneously. We investigate the visual design that effectively conveys (dis-)similarities in multi-parameter distributions, and demonstrate that users can quickly comprehend parameter-specific differences regarding distribution shape and representativeness from a side-by-side view of these plots. In a 3D spatial view, users can analyse and compare the spatial distribution of selected data points in different ensemble members via interval-based isosurface raycasting. In two real-world application cases we show how our approach is used to analyse the multi-parameter distributions across an ensemble of 3D fields.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33625986</pmid><doi>10.1109/TVCG.2021.3061925</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3394-0731</orcidid><orcidid>https://orcid.org/0000-0002-4009-3980</orcidid><orcidid>https://orcid.org/0000-0002-2553-184X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2022-10, Vol.28 (10), p.3530-3545
issn 1077-2626
1941-0506
language eng
recordid cdi_pubmed_primary_33625986
source IEEE Xplore (Online service)
subjects 3D rendering
Data points
Data visualization
distribution comparison
Ensemble visualization
Isosurfaces
Mathematical analysis
multi-parameter visualization
parallel coordinates
Parameters
Rendering (computer graphics)
Spatial distribution
Three-dimensional displays
Uncertainty
Visual analytics
Workflow
title Visual Analysis of Multi-Parameter Distributions Across Ensembles of 3D Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Analysis%20of%20Multi-Parameter%20Distributions%20Across%20Ensembles%20of%203D%20Fields&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Kumpf,%20Alexander&rft.date=2022-10-01&rft.volume=28&rft.issue=10&rft.spage=3530&rft.epage=3545&rft.pages=3530-3545&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2021.3061925&rft_dat=%3Cproquest_pubme%3E2493451550%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-16bd70cccb1e4a94568130c46b8df47d7c3635f92b3df273cf5d0d162d5b61603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2709156343&rft_id=info:pmid/33625986&rft_ieee_id=9362264&rfr_iscdi=true