Loading…

Fractional-order model representations of apparent vascular compliance as an alternative in the analysis of arterial stiffness: an in-silico study

. Recent studies have demonstrated the advantages of fractional-order calculus tools for probing the viscoelastic properties of collagenous tissue, characterizing the arterial blood flow and red cell membrane mechanics, and modeling the aortic valve cusp. In this article, we present novel lumped-par...

Full description

Saved in:
Bibliographic Details
Published in:Physiological measurement 2021-04, Vol.42 (4), p.45008
Main Authors: Bahloul, Mohamed A, Laleg Kirati, Taous-Meriem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-fdf6d285db3bd323d65a3f7f31727373fa2f856301dce436a0d20d91be35f4453
cites cdi_FETCH-LOGICAL-c378t-fdf6d285db3bd323d65a3f7f31727373fa2f856301dce436a0d20d91be35f4453
container_end_page
container_issue 4
container_start_page 45008
container_title Physiological measurement
container_volume 42
creator Bahloul, Mohamed A
Laleg Kirati, Taous-Meriem
description . Recent studies have demonstrated the advantages of fractional-order calculus tools for probing the viscoelastic properties of collagenous tissue, characterizing the arterial blood flow and red cell membrane mechanics, and modeling the aortic valve cusp. In this article, we present novel lumped-parameter equivalent circuit models for apparent arterial compliance using a fractional-order capacitor (FOC). FOCs, which generalize capacitors and resistors, display a fractional-order behavior that can capture both elastic and viscous properties through a power-law formulation. . The proposed framework describes the dynamic relationship between the blood-pressure input and the blood volume, using linear fractional-order differential equations. . The results show that the proposed models present a reasonable fit with the data of more than 4000 subjects. Additionally, strong correlations have been identified between the fractional-order parameter estimates and the central hemodynamic determinants as well as the pulse-wave velocity indexes. . Therefore, the fractional-order-based paradigm for arterial compliance shows notable potential as an alternative tool in the analysis of arterial stiffness.
doi_str_mv 10.1088/1361-6579/abf1b1
format article
fullrecord <record><control><sourceid>pubmed_iop_j</sourceid><recordid>TN_cdi_pubmed_primary_33761470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33761470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-fdf6d285db3bd323d65a3f7f31727373fa2f856301dce436a0d20d91be35f4453</originalsourceid><addsrcrecordid>eNp1kE1L5DAYx8Piso6jd0-So4etJn3apuNNBt9A2MvuOTxtEoykTUg6wnwNP7Epdeekpwf-bw_8CDnn7Iqztr3m0PCiqcXmGjvDO_6DrA7SEVmxTSMKAKiOyUlKr4xx3pb1L3IMIBpeCbYi7_cR-8n6EV3ho9KRDl5pR6MOUSc9TjibiXpDMQSMWaFvmPqdw0h7PwRncew1xURxpOgmHcdcedPUjnR6yUZe3ie7LMRsW3Q0TdaYUad0M7fsWCTrbO-zvlP7U_LToEv67POuyb_7u7_bx-L5z8PT9va56EG0U2GUaVTZ1qqDTkEJqqkRjDDARSlAgMHStHUDjKteV9AgUyVTG95pqE1V1bAmbNnto08paiNDtAPGveRMznjlzFLOLOWCN1culkrYdYNWh8J_njlwuQSsD_LV7zIMl2QYNMqqlJVkVc1YK4MyOfr7i-i3rz8AbJKVyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fractional-order model representations of apparent vascular compliance as an alternative in the analysis of arterial stiffness: an in-silico study</title><source>Institute of Physics</source><creator>Bahloul, Mohamed A ; Laleg Kirati, Taous-Meriem</creator><creatorcontrib>Bahloul, Mohamed A ; Laleg Kirati, Taous-Meriem</creatorcontrib><description>. Recent studies have demonstrated the advantages of fractional-order calculus tools for probing the viscoelastic properties of collagenous tissue, characterizing the arterial blood flow and red cell membrane mechanics, and modeling the aortic valve cusp. In this article, we present novel lumped-parameter equivalent circuit models for apparent arterial compliance using a fractional-order capacitor (FOC). FOCs, which generalize capacitors and resistors, display a fractional-order behavior that can capture both elastic and viscous properties through a power-law formulation. . The proposed framework describes the dynamic relationship between the blood-pressure input and the blood volume, using linear fractional-order differential equations. . The results show that the proposed models present a reasonable fit with the data of more than 4000 subjects. Additionally, strong correlations have been identified between the fractional-order parameter estimates and the central hemodynamic determinants as well as the pulse-wave velocity indexes. . Therefore, the fractional-order-based paradigm for arterial compliance shows notable potential as an alternative tool in the analysis of arterial stiffness.</description><identifier>ISSN: 0967-3334</identifier><identifier>EISSN: 1361-6579</identifier><identifier>DOI: 10.1088/1361-6579/abf1b1</identifier><identifier>PMID: 33761470</identifier><identifier>CODEN: PMEAE3</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Apparent compliance ; Arterial stiffness ; Cardiovascular system ; fractional calculus ; Fractional order capacitor ; Input Impedance</subject><ispartof>Physiological measurement, 2021-04, Vol.42 (4), p.45008</ispartof><rights>2021 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-fdf6d285db3bd323d65a3f7f31727373fa2f856301dce436a0d20d91be35f4453</citedby><cites>FETCH-LOGICAL-c378t-fdf6d285db3bd323d65a3f7f31727373fa2f856301dce436a0d20d91be35f4453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33761470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahloul, Mohamed A</creatorcontrib><creatorcontrib>Laleg Kirati, Taous-Meriem</creatorcontrib><title>Fractional-order model representations of apparent vascular compliance as an alternative in the analysis of arterial stiffness: an in-silico study</title><title>Physiological measurement</title><addtitle>PMEA</addtitle><addtitle>Physiol. Meas</addtitle><description>. Recent studies have demonstrated the advantages of fractional-order calculus tools for probing the viscoelastic properties of collagenous tissue, characterizing the arterial blood flow and red cell membrane mechanics, and modeling the aortic valve cusp. In this article, we present novel lumped-parameter equivalent circuit models for apparent arterial compliance using a fractional-order capacitor (FOC). FOCs, which generalize capacitors and resistors, display a fractional-order behavior that can capture both elastic and viscous properties through a power-law formulation. . The proposed framework describes the dynamic relationship between the blood-pressure input and the blood volume, using linear fractional-order differential equations. . The results show that the proposed models present a reasonable fit with the data of more than 4000 subjects. Additionally, strong correlations have been identified between the fractional-order parameter estimates and the central hemodynamic determinants as well as the pulse-wave velocity indexes. . Therefore, the fractional-order-based paradigm for arterial compliance shows notable potential as an alternative tool in the analysis of arterial stiffness.</description><subject>Apparent compliance</subject><subject>Arterial stiffness</subject><subject>Cardiovascular system</subject><subject>fractional calculus</subject><subject>Fractional order capacitor</subject><subject>Input Impedance</subject><issn>0967-3334</issn><issn>1361-6579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1L5DAYx8Piso6jd0-So4etJn3apuNNBt9A2MvuOTxtEoykTUg6wnwNP7Epdeekpwf-bw_8CDnn7Iqztr3m0PCiqcXmGjvDO_6DrA7SEVmxTSMKAKiOyUlKr4xx3pb1L3IMIBpeCbYi7_cR-8n6EV3ho9KRDl5pR6MOUSc9TjibiXpDMQSMWaFvmPqdw0h7PwRncew1xURxpOgmHcdcedPUjnR6yUZe3ie7LMRsW3Q0TdaYUad0M7fsWCTrbO-zvlP7U_LToEv67POuyb_7u7_bx-L5z8PT9va56EG0U2GUaVTZ1qqDTkEJqqkRjDDARSlAgMHStHUDjKteV9AgUyVTG95pqE1V1bAmbNnto08paiNDtAPGveRMznjlzFLOLOWCN1culkrYdYNWh8J_njlwuQSsD_LV7zIMl2QYNMqqlJVkVc1YK4MyOfr7i-i3rz8AbJKVyw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Bahloul, Mohamed A</creator><creator>Laleg Kirati, Taous-Meriem</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Fractional-order model representations of apparent vascular compliance as an alternative in the analysis of arterial stiffness: an in-silico study</title><author>Bahloul, Mohamed A ; Laleg Kirati, Taous-Meriem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-fdf6d285db3bd323d65a3f7f31727373fa2f856301dce436a0d20d91be35f4453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apparent compliance</topic><topic>Arterial stiffness</topic><topic>Cardiovascular system</topic><topic>fractional calculus</topic><topic>Fractional order capacitor</topic><topic>Input Impedance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahloul, Mohamed A</creatorcontrib><creatorcontrib>Laleg Kirati, Taous-Meriem</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Physiological measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahloul, Mohamed A</au><au>Laleg Kirati, Taous-Meriem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional-order model representations of apparent vascular compliance as an alternative in the analysis of arterial stiffness: an in-silico study</atitle><jtitle>Physiological measurement</jtitle><stitle>PMEA</stitle><addtitle>Physiol. Meas</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>42</volume><issue>4</issue><spage>45008</spage><pages>45008-</pages><issn>0967-3334</issn><eissn>1361-6579</eissn><coden>PMEAE3</coden><abstract>. Recent studies have demonstrated the advantages of fractional-order calculus tools for probing the viscoelastic properties of collagenous tissue, characterizing the arterial blood flow and red cell membrane mechanics, and modeling the aortic valve cusp. In this article, we present novel lumped-parameter equivalent circuit models for apparent arterial compliance using a fractional-order capacitor (FOC). FOCs, which generalize capacitors and resistors, display a fractional-order behavior that can capture both elastic and viscous properties through a power-law formulation. . The proposed framework describes the dynamic relationship between the blood-pressure input and the blood volume, using linear fractional-order differential equations. . The results show that the proposed models present a reasonable fit with the data of more than 4000 subjects. Additionally, strong correlations have been identified between the fractional-order parameter estimates and the central hemodynamic determinants as well as the pulse-wave velocity indexes. . Therefore, the fractional-order-based paradigm for arterial compliance shows notable potential as an alternative tool in the analysis of arterial stiffness.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33761470</pmid><doi>10.1088/1361-6579/abf1b1</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0967-3334
ispartof Physiological measurement, 2021-04, Vol.42 (4), p.45008
issn 0967-3334
1361-6579
language eng
recordid cdi_pubmed_primary_33761470
source Institute of Physics
subjects Apparent compliance
Arterial stiffness
Cardiovascular system
fractional calculus
Fractional order capacitor
Input Impedance
title Fractional-order model representations of apparent vascular compliance as an alternative in the analysis of arterial stiffness: an in-silico study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional-order%20model%20representations%20of%20apparent%20vascular%20compliance%20as%20an%20alternative%20in%20the%20analysis%20of%20arterial%20stiffness:%20an%20in-silico%20study&rft.jtitle=Physiological%20measurement&rft.au=Bahloul,%20Mohamed%20A&rft.date=2021-04-01&rft.volume=42&rft.issue=4&rft.spage=45008&rft.pages=45008-&rft.issn=0967-3334&rft.eissn=1361-6579&rft.coden=PMEAE3&rft_id=info:doi/10.1088/1361-6579/abf1b1&rft_dat=%3Cpubmed_iop_j%3E33761470%3C/pubmed_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-fdf6d285db3bd323d65a3f7f31727373fa2f856301dce436a0d20d91be35f4453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33761470&rfr_iscdi=true