Loading…

Characterization of signals for a Divertor Tokamak Test facility interferometer/polarimeter system

In magnetically confined fusion experiments, laser interferometer/polarimeter systems allow one to determine plasma density, give valuable information on the internal magnetic fields, and contribute to the evaluation of the plasma magnetic equilibrium and to the real-time estimation of the q profile...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2021-03, Vol.92 (3), p.033503-033503
Main Authors: Fiorucci, D., Giudicotti, L., Innocente, P., Terranova, D., Mazzotta, C., Tudisco, O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In magnetically confined fusion experiments, laser interferometer/polarimeter systems allow one to determine plasma density, give valuable information on the internal magnetic fields, and contribute to the evaluation of the plasma magnetic equilibrium and to the real-time estimation of the q profile to allow feedback configuration control. This work presents an analysis of the interferometric and polarimetric signals of a multi-chord far-infrared interferometer/polarimeter for the divertor tokamak test facility, the new tokamak device currently under construction in Italy. The polarimetric signals are calculated both with approximate formulas and by solving the equation describing the evolution of the laser beam polarization inside the plasma using the Mueller formalism. The latter method correctly accounts for crosstalk between Faraday rotation and the Cotton–Mouton effect. The impact of the plasma birefringence on the interferometric phase shift is also studied, and it is found that a perturbation of the interferometric phase shift is present also in the case of an initial fixed linear polarization of the probe laser beam.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0043516