Loading…
PaccMann RL : De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning
With the advent of deep generative models in computational chemistry, drug design is undergoing an unprecedented transformation. Although deep learning approaches have shown potential in generating compounds with desired chemical properties, they disregard the cellular environment of target diseases...
Saved in:
Published in: | iScience 2021-04, Vol.24 (4), p.102269 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 4 |
container_start_page | 102269 |
container_title | iScience |
container_volume | 24 |
creator | Born, Jannis Manica, Matteo Oskooei, Ali Cadow, Joris Markert, Greta Rodríguez Martínez, María |
description | With the advent of deep generative models in computational chemistry,
drug design is undergoing an unprecedented transformation. Although deep learning approaches have shown potential in generating compounds with desired chemical properties, they disregard the cellular environment of target diseases. Bridging systems biology and drug design, we present a reinforcement learning method for de novo molecular design from gene expression profiles. We construct a hybrid Variational Autoencoder that tailors molecules to target-specific transcriptomic profiles, using an anticancer drug sensitivity prediction model (PaccMann) as reward function. Without incorporating information about anticancer drugs, the molecule generation is biased toward compounds with high predicted efficacy against cell lines or cancer types. The generation can be further refined by subsidiary constraints such as toxicity. Our cancer-type-specific candidate drugs are similar to cancer drugs in drug-likeness, synthesizability, and solubility and frequently exhibit the highest structural similarity to compounds with known efficacy against these cancer types. |
format | article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_33851095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33851095</sourcerecordid><originalsourceid>FETCH-pubmed_primary_338510953</originalsourceid><addsrcrecordid>eNqFjsFqAjEQQEOhqFR_ocwPLMRdV1yvVvFQoRTvMsZZHZtMlklW8O_10J4LD97lHd6LGZX1oimsnZVDM0npaq0tn8ya-cAMq2pRT21Tj0z_hc7tUAS-P2EJHwQSbxHOJKSYOQrEFi6cC88_BCiZHYojhRA9ud5TglZjgKwoySl3OQZ2cMKMcGMEJZY2qqNAksETqrCcx-a1RZ9o8us3875Z71fbouuPgU6HTjmg3g9_n9W_wQOpTkqh</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PaccMann RL : De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning</title><source>Open Access: PubMed Central</source><source>ScienceDirect (Online service)</source><creator>Born, Jannis ; Manica, Matteo ; Oskooei, Ali ; Cadow, Joris ; Markert, Greta ; Rodríguez Martínez, María</creator><creatorcontrib>Born, Jannis ; Manica, Matteo ; Oskooei, Ali ; Cadow, Joris ; Markert, Greta ; Rodríguez Martínez, María</creatorcontrib><description>With the advent of deep generative models in computational chemistry,
drug design is undergoing an unprecedented transformation. Although deep learning approaches have shown potential in generating compounds with desired chemical properties, they disregard the cellular environment of target diseases. Bridging systems biology and drug design, we present a reinforcement learning method for de novo molecular design from gene expression profiles. We construct a hybrid Variational Autoencoder that tailors molecules to target-specific transcriptomic profiles, using an anticancer drug sensitivity prediction model (PaccMann) as reward function. Without incorporating information about anticancer drugs, the molecule generation is biased toward compounds with high predicted efficacy against cell lines or cancer types. The generation can be further refined by subsidiary constraints such as toxicity. Our cancer-type-specific candidate drugs are similar to cancer drugs in drug-likeness, synthesizability, and solubility and frequently exhibit the highest structural similarity to compounds with known efficacy against these cancer types.</description><identifier>EISSN: 2589-0042</identifier><identifier>PMID: 33851095</identifier><language>eng</language><publisher>United States</publisher><ispartof>iScience, 2021-04, Vol.24 (4), p.102269</ispartof><rights>2021 The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33851095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Born, Jannis</creatorcontrib><creatorcontrib>Manica, Matteo</creatorcontrib><creatorcontrib>Oskooei, Ali</creatorcontrib><creatorcontrib>Cadow, Joris</creatorcontrib><creatorcontrib>Markert, Greta</creatorcontrib><creatorcontrib>Rodríguez Martínez, María</creatorcontrib><title>PaccMann RL : De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning</title><title>iScience</title><addtitle>iScience</addtitle><description>With the advent of deep generative models in computational chemistry,
drug design is undergoing an unprecedented transformation. Although deep learning approaches have shown potential in generating compounds with desired chemical properties, they disregard the cellular environment of target diseases. Bridging systems biology and drug design, we present a reinforcement learning method for de novo molecular design from gene expression profiles. We construct a hybrid Variational Autoencoder that tailors molecules to target-specific transcriptomic profiles, using an anticancer drug sensitivity prediction model (PaccMann) as reward function. Without incorporating information about anticancer drugs, the molecule generation is biased toward compounds with high predicted efficacy against cell lines or cancer types. The generation can be further refined by subsidiary constraints such as toxicity. Our cancer-type-specific candidate drugs are similar to cancer drugs in drug-likeness, synthesizability, and solubility and frequently exhibit the highest structural similarity to compounds with known efficacy against these cancer types.</description><issn>2589-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFjsFqAjEQQEOhqFR_ocwPLMRdV1yvVvFQoRTvMsZZHZtMlklW8O_10J4LD97lHd6LGZX1oimsnZVDM0npaq0tn8ya-cAMq2pRT21Tj0z_hc7tUAS-P2EJHwQSbxHOJKSYOQrEFi6cC88_BCiZHYojhRA9ud5TglZjgKwoySl3OQZ2cMKMcGMEJZY2qqNAksETqrCcx-a1RZ9o8us3875Z71fbouuPgU6HTjmg3g9_n9W_wQOpTkqh</recordid><startdate>20210423</startdate><enddate>20210423</enddate><creator>Born, Jannis</creator><creator>Manica, Matteo</creator><creator>Oskooei, Ali</creator><creator>Cadow, Joris</creator><creator>Markert, Greta</creator><creator>Rodríguez Martínez, María</creator><scope>NPM</scope></search><sort><creationdate>20210423</creationdate><title>PaccMann RL : De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning</title><author>Born, Jannis ; Manica, Matteo ; Oskooei, Ali ; Cadow, Joris ; Markert, Greta ; Rodríguez Martínez, María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_338510953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Born, Jannis</creatorcontrib><creatorcontrib>Manica, Matteo</creatorcontrib><creatorcontrib>Oskooei, Ali</creatorcontrib><creatorcontrib>Cadow, Joris</creatorcontrib><creatorcontrib>Markert, Greta</creatorcontrib><creatorcontrib>Rodríguez Martínez, María</creatorcontrib><collection>PubMed</collection><jtitle>iScience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Born, Jannis</au><au>Manica, Matteo</au><au>Oskooei, Ali</au><au>Cadow, Joris</au><au>Markert, Greta</au><au>Rodríguez Martínez, María</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PaccMann RL : De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning</atitle><jtitle>iScience</jtitle><addtitle>iScience</addtitle><date>2021-04-23</date><risdate>2021</risdate><volume>24</volume><issue>4</issue><spage>102269</spage><pages>102269-</pages><eissn>2589-0042</eissn><abstract>With the advent of deep generative models in computational chemistry,
drug design is undergoing an unprecedented transformation. Although deep learning approaches have shown potential in generating compounds with desired chemical properties, they disregard the cellular environment of target diseases. Bridging systems biology and drug design, we present a reinforcement learning method for de novo molecular design from gene expression profiles. We construct a hybrid Variational Autoencoder that tailors molecules to target-specific transcriptomic profiles, using an anticancer drug sensitivity prediction model (PaccMann) as reward function. Without incorporating information about anticancer drugs, the molecule generation is biased toward compounds with high predicted efficacy against cell lines or cancer types. The generation can be further refined by subsidiary constraints such as toxicity. Our cancer-type-specific candidate drugs are similar to cancer drugs in drug-likeness, synthesizability, and solubility and frequently exhibit the highest structural similarity to compounds with known efficacy against these cancer types.</abstract><cop>United States</cop><pmid>33851095</pmid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2589-0042 |
ispartof | iScience, 2021-04, Vol.24 (4), p.102269 |
issn | 2589-0042 |
language | eng |
recordid | cdi_pubmed_primary_33851095 |
source | Open Access: PubMed Central; ScienceDirect (Online service) |
title | PaccMann RL : De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A57%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PaccMann%20RL%20:%20De%20novo%20generation%20of%20hit-like%20anticancer%20molecules%20from%20transcriptomic%20data%20via%20reinforcement%20learning&rft.jtitle=iScience&rft.au=Born,%20Jannis&rft.date=2021-04-23&rft.volume=24&rft.issue=4&rft.spage=102269&rft.pages=102269-&rft.eissn=2589-0042&rft_id=info:doi/&rft_dat=%3Cpubmed%3E33851095%3C/pubmed%3E%3Cgrp_id%3Ecdi_FETCH-pubmed_primary_338510953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33851095&rfr_iscdi=true |