Loading…
Weakly Supervised Object Localization and Detection: A Survey
As an emerging and challenging problem in the computer vision community, weakly supervised object localization and detection plays an important role for developing new generation computer vision systems and has received significant attention in the past decade. As methods have been proposed, a compr...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2022-09, Vol.44 (9), p.5866-5885 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As an emerging and challenging problem in the computer vision community, weakly supervised object localization and detection plays an important role for developing new generation computer vision systems and has received significant attention in the past decade. As methods have been proposed, a comprehensive survey of these topics is of great importance. In this work, we review (1) classic models, (2) approaches with feature representations from off-the-shelf deep networks, (3) approaches solely based on deep learning, and (4) publicly available datasets and standard evaluation metrics that are widely used in this field. We also discuss the key challenges in this field, development history of this field, advantages/disadvantages of the methods in each category, the relationships between methods in different categories, applications of the weakly supervised object localization and detection methods, and potential future directions to further promote the development of this research field. |
---|---|
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2021.3074313 |