Loading…
Anatomy-aided deep learning for medical image segmentation: a review
Deep learning has become widely used for medical image segmentation in recent years. However, despite these advances, there are still problems for which deep learning-based segmentation fails. Recently, some deep learning approaches had a breakthrough by using anatomical information which is the cru...
Saved in:
Published in: | Physics in medicine & biology 2021-06, Vol.66 (11), p.11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-c351bf4b8a68cbac9b9ae24bfc46cdf9cd6506ff8f1e842d5702593ed5b0c53 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-c351bf4b8a68cbac9b9ae24bfc46cdf9cd6506ff8f1e842d5702593ed5b0c53 |
container_end_page | |
container_issue | 11 |
container_start_page | 11 |
container_title | Physics in medicine & biology |
container_volume | 66 |
creator | Liu, Lu Wolterink, Jelmer M Brune, Christoph Veldhuis, Raymond N J |
description | Deep learning has become widely used for medical image segmentation in recent years. However, despite these advances, there are still problems for which deep learning-based segmentation fails. Recently, some deep learning approaches had a breakthrough by using anatomical information which is the crucial cue for manual segmentation. In this paper, we provide a review of anatomy-aided deep learning for medical image segmentation which covers systematically summarized anatomical information categories and corresponding representation methods. We address known and potentially solvable challenges in anatomy-aided deep learning and present a categorized methodology overview on using anatomical information with deep learning from over 70 papers. Finally, we discuss the strengths and limitations of the current anatomy-aided deep learning approaches and suggest potential future work. |
doi_str_mv | 10.1088/1361-6560/abfbf4 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33906186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2519318052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-c351bf4b8a68cbac9b9ae24bfc46cdf9cd6506ff8f1e842d5702593ed5b0c53</originalsourceid><addsrcrecordid>eNp9kEtLAzEURoMotlb3rmSWXTiaO5nEjDvxDQVBuw953JSReZnMKP33Tml1JULgQjj3436HkFOgF0ClvAQmIBVc0EttvPH5Hpn-fu2TKaUM0gI4n5CjGN8pBZBZfkgmjBVUgBRTcnfT6L6t16kuHbrEIXZJhTo0ZbNKfBuSGl1pdZWUtV5hEnFVY9Prvmyb60QnAT9L_DomB15XEU92c0beHu6Xt0_p4uXx-fZmkdocoE8t4zAeaaQW0hptC1NozHLjbS6s84V1glPhvfSAMs8cv6IZLxg6bqjlbEbm29QutB8Dxl7VZbRYVbrBdogq41AwkJRnI0q3qA1tjAG96sJYIKwVULUxpzaa1EaT2pobV8526YMZO_8u_KgagfMtULadem-H0IxV_8ub_4F3tVFCKIDxLV8pqM559g17d4ZP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519318052</pqid></control><display><type>article</type><title>Anatomy-aided deep learning for medical image segmentation: a review</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Liu, Lu ; Wolterink, Jelmer M ; Brune, Christoph ; Veldhuis, Raymond N J</creator><creatorcontrib>Liu, Lu ; Wolterink, Jelmer M ; Brune, Christoph ; Veldhuis, Raymond N J</creatorcontrib><description>Deep learning has become widely used for medical image segmentation in recent years. However, despite these advances, there are still problems for which deep learning-based segmentation fails. Recently, some deep learning approaches had a breakthrough by using anatomical information which is the crucial cue for manual segmentation. In this paper, we provide a review of anatomy-aided deep learning for medical image segmentation which covers systematically summarized anatomical information categories and corresponding representation methods. We address known and potentially solvable challenges in anatomy-aided deep learning and present a categorized methodology overview on using anatomical information with deep learning from over 70 papers. Finally, we discuss the strengths and limitations of the current anatomy-aided deep learning approaches and suggest potential future work.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/abfbf4</identifier><identifier>PMID: 33906186</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>anatomical information ; deep learning ; medical image segmentation</subject><ispartof>Physics in medicine & biology, 2021-06, Vol.66 (11), p.11</ispartof><rights>2021 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-c351bf4b8a68cbac9b9ae24bfc46cdf9cd6506ff8f1e842d5702593ed5b0c53</citedby><cites>FETCH-LOGICAL-c411t-c351bf4b8a68cbac9b9ae24bfc46cdf9cd6506ff8f1e842d5702593ed5b0c53</cites><orcidid>0000-0003-0145-5069 ; 0000-0002-0381-5235 ; 0000-0003-1352-421X ; 0000-0001-5505-475X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33906186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Wolterink, Jelmer M</creatorcontrib><creatorcontrib>Brune, Christoph</creatorcontrib><creatorcontrib>Veldhuis, Raymond N J</creatorcontrib><title>Anatomy-aided deep learning for medical image segmentation: a review</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Deep learning has become widely used for medical image segmentation in recent years. However, despite these advances, there are still problems for which deep learning-based segmentation fails. Recently, some deep learning approaches had a breakthrough by using anatomical information which is the crucial cue for manual segmentation. In this paper, we provide a review of anatomy-aided deep learning for medical image segmentation which covers systematically summarized anatomical information categories and corresponding representation methods. We address known and potentially solvable challenges in anatomy-aided deep learning and present a categorized methodology overview on using anatomical information with deep learning from over 70 papers. Finally, we discuss the strengths and limitations of the current anatomy-aided deep learning approaches and suggest potential future work.</description><subject>anatomical information</subject><subject>deep learning</subject><subject>medical image segmentation</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEURoMotlb3rmSWXTiaO5nEjDvxDQVBuw953JSReZnMKP33Tml1JULgQjj3436HkFOgF0ClvAQmIBVc0EttvPH5Hpn-fu2TKaUM0gI4n5CjGN8pBZBZfkgmjBVUgBRTcnfT6L6t16kuHbrEIXZJhTo0ZbNKfBuSGl1pdZWUtV5hEnFVY9Prvmyb60QnAT9L_DomB15XEU92c0beHu6Xt0_p4uXx-fZmkdocoE8t4zAeaaQW0hptC1NozHLjbS6s84V1glPhvfSAMs8cv6IZLxg6bqjlbEbm29QutB8Dxl7VZbRYVbrBdogq41AwkJRnI0q3qA1tjAG96sJYIKwVULUxpzaa1EaT2pobV8526YMZO_8u_KgagfMtULadem-H0IxV_8ub_4F3tVFCKIDxLV8pqM559g17d4ZP</recordid><startdate>20210607</startdate><enddate>20210607</enddate><creator>Liu, Lu</creator><creator>Wolterink, Jelmer M</creator><creator>Brune, Christoph</creator><creator>Veldhuis, Raymond N J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0145-5069</orcidid><orcidid>https://orcid.org/0000-0002-0381-5235</orcidid><orcidid>https://orcid.org/0000-0003-1352-421X</orcidid><orcidid>https://orcid.org/0000-0001-5505-475X</orcidid></search><sort><creationdate>20210607</creationdate><title>Anatomy-aided deep learning for medical image segmentation: a review</title><author>Liu, Lu ; Wolterink, Jelmer M ; Brune, Christoph ; Veldhuis, Raymond N J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-c351bf4b8a68cbac9b9ae24bfc46cdf9cd6506ff8f1e842d5702593ed5b0c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>anatomical information</topic><topic>deep learning</topic><topic>medical image segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Wolterink, Jelmer M</creatorcontrib><creatorcontrib>Brune, Christoph</creatorcontrib><creatorcontrib>Veldhuis, Raymond N J</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lu</au><au>Wolterink, Jelmer M</au><au>Brune, Christoph</au><au>Veldhuis, Raymond N J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomy-aided deep learning for medical image segmentation: a review</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2021-06-07</date><risdate>2021</risdate><volume>66</volume><issue>11</issue><spage>11</spage><pages>11-</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Deep learning has become widely used for medical image segmentation in recent years. However, despite these advances, there are still problems for which deep learning-based segmentation fails. Recently, some deep learning approaches had a breakthrough by using anatomical information which is the crucial cue for manual segmentation. In this paper, we provide a review of anatomy-aided deep learning for medical image segmentation which covers systematically summarized anatomical information categories and corresponding representation methods. We address known and potentially solvable challenges in anatomy-aided deep learning and present a categorized methodology overview on using anatomical information with deep learning from over 70 papers. Finally, we discuss the strengths and limitations of the current anatomy-aided deep learning approaches and suggest potential future work.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>33906186</pmid><doi>10.1088/1361-6560/abfbf4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0145-5069</orcidid><orcidid>https://orcid.org/0000-0002-0381-5235</orcidid><orcidid>https://orcid.org/0000-0003-1352-421X</orcidid><orcidid>https://orcid.org/0000-0001-5505-475X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2021-06, Vol.66 (11), p.11 |
issn | 0031-9155 1361-6560 |
language | eng |
recordid | cdi_pubmed_primary_33906186 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | anatomical information deep learning medical image segmentation |
title | Anatomy-aided deep learning for medical image segmentation: a review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomy-aided%20deep%20learning%20for%20medical%20image%20segmentation:%20a%20review&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Liu,%20Lu&rft.date=2021-06-07&rft.volume=66&rft.issue=11&rft.spage=11&rft.pages=11-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/abfbf4&rft_dat=%3Cproquest_pubme%3E2519318052%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-c351bf4b8a68cbac9b9ae24bfc46cdf9cd6506ff8f1e842d5702593ed5b0c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2519318052&rft_id=info:pmid/33906186&rfr_iscdi=true |