Loading…
Synchrotron Radiation Spectroscopy and Transmission Electron Microscopy Techniques to Evaluate TiO 2 NPs Incorporation, Speciation, and Impact on Root Cells Ultrastructure of Pisum sativum L. Plants
Biosolids (Bs) for use in agriculture are an important way for introducing and transferring TiO nanoparticles (NPs) to plants and food chain. Roots of L. plants grown in Bs-amended soils spiked with TiO 800 mg/kg as rutile NPs, anatase NPs, mixture of both NPs and submicron particles (SMPs) were inv...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2021-04, Vol.11 (4) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biosolids (Bs) for use in agriculture are an important way for introducing and transferring TiO
nanoparticles (NPs) to plants and food chain. Roots of
L. plants grown in Bs-amended soils spiked with TiO
800 mg/kg as rutile NPs, anatase NPs, mixture of both NPs and submicron particles (SMPs) were investigated by Transmission Electron Microscopy (TEM), synchrotron radiation based micro X-ray Fluorescence and micro X-ray Absorption Near-Edge Structure (µXRF/µXANES) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). TEM analysis showed damages in cells ultrastructure of all treated samples, although a more evident effect was observed with single anatase or rutile NPs treatments. Micro-XRF and TEM evidenced the presence of nano and SMPs mainly in the cortex cells near the rhizodermis. Micro-XRF/micro-XANES analysis revealed anatase, rutile, and ilmenite as the main TiO
polymorphs in the original soil and Bs, and the preferential anatase uptake by the roots. For all treatments Ti concentration in the roots increased by 38-56%, however plants translocation factor (TF) increased mostly with NPs treatment (261-315%) and less with SMPs (about 85%), with respect to control. In addition, all samples showed a limited transfer of TiO
to the shoots (very low TF value). These findings evidenced a potential toxicity of TiO
NPs present in Bs and accumulating in soil, suggesting the necessity of appropriate regulations for the occurrence of NPs in Bs used in agriculture. |
---|---|
ISSN: | 2079-4991 2079-4991 |