Loading…
GMP: A Genetic Mission Planner for Heterogeneous Multirobot System Applications
The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased acceptance, and demanding productivity requirements. Being able to automate the generation of mission plans for MASs is critical for managing c...
Saved in:
Published in: | IEEE transactions on cybernetics 2022-10, Vol.52 (10), p.10627-10638 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-3a12dbe30a963592a767b36e7360dd11b6c2ea85e24d9e1c73af0eaf791f20a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-3a12dbe30a963592a767b36e7360dd11b6c2ea85e24d9e1c73af0eaf791f20a03 |
container_end_page | 10638 |
container_issue | 10 |
container_start_page | 10627 |
container_title | IEEE transactions on cybernetics |
container_volume | 52 |
creator | Miloradovic, Branko Curuklu, Baran Ekstrom, Mikael Papadopoulos, Alessandro Vittorio |
description | The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased acceptance, and demanding productivity requirements. Being able to automate the generation of mission plans for MASs is critical for managing complex missions in realistic settings. In addition, finding the right level of abstraction to represent any generic MAS mission is important for being able to provide general solution to the automated planning problem. In this article, we show how a mission for heterogeneous MASs can be cast as an extension of the traveling salesperson problem (TSP), and we propose a mixed-integer linear programming formulation. In order to solve this problem, a genetic mission planner (GMP), with a local plan refinement algorithm, is proposed. In addition, the comparative evaluation of CPLEX and GMP is presented in terms of timing and optimality of the obtained solutions. The algorithms are benchmarked on a proposed set of different problem instances. The results show that, in the presence of timing constraints, GMP outperforms CPLEX in the majority of test instances. |
doi_str_mv | 10.1109/TCYB.2021.3070913 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_33983890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9430776</ieee_id><sourcerecordid>2528174691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-3a12dbe30a963592a767b36e7360dd11b6c2ea85e24d9e1c73af0eaf791f20a03</originalsourceid><addsrcrecordid>eNpdkUFr3DAQhUVJacImP6AUiiCXHrJbjWRLVm_bTbIpZEmgaaEnIdvjVMG2XMmm7L-vlt3sobpIjL43zJtHyHtgCwCmPz-tfn1dcMZhIZhiGsQbcsZBFnPOVX5yfEt1Si5ifGHpFKmki3fkVAhdiEKzM_Kw3jx-oUu6xh5HV9GNi9H5nj62tu8x0MYHeocjBv-cCD9Fupna0QVf-pF-38YRO7ochtZVdky6eE7eNraNeHG4Z-TH7c3T6m5-_7D-tlrez6uM63EuLPC6RMGsliLX3CqpSiFRCcnqGqCUFUdb5MizWiNUStiGoW2UhoYzy8SMXO37xr84TKUZguts2Bpvnbl2P5fGh2fT1b9NngkmE_5pjw_B_5kwjqZzscI2udyZMjznBahMpjXOyOV_6IufQp_MGK5AiqwAyBIFe6oKPsaAzXECYGaXj9nlY3b5mEM-SfPx0HkqO6yPitc0EvBhDzhEPH7r5EApKf4BVJmSnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716348114</pqid></control><display><type>article</type><title>GMP: A Genetic Mission Planner for Heterogeneous Multirobot System Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Miloradovic, Branko ; Curuklu, Baran ; Ekstrom, Mikael ; Papadopoulos, Alessandro Vittorio</creator><creatorcontrib>Miloradovic, Branko ; Curuklu, Baran ; Ekstrom, Mikael ; Papadopoulos, Alessandro Vittorio</creatorcontrib><description>The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased acceptance, and demanding productivity requirements. Being able to automate the generation of mission plans for MASs is critical for managing complex missions in realistic settings. In addition, finding the right level of abstraction to represent any generic MAS mission is important for being able to provide general solution to the automated planning problem. In this article, we show how a mission for heterogeneous MASs can be cast as an extension of the traveling salesperson problem (TSP), and we propose a mixed-integer linear programming formulation. In order to solve this problem, a genetic mission planner (GMP), with a local plan refinement algorithm, is proposed. In addition, the comparative evaluation of CPLEX and GMP is presented in terms of timing and optimality of the obtained solutions. The algorithms are benchmarked on a proposed set of different problem instances. The results show that, in the presence of timing constraints, GMP outperforms CPLEX in the majority of test instances.</description><identifier>ISSN: 2168-2267</identifier><identifier>ISSN: 2168-2275</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3070913</identifier><identifier>PMID: 33983890</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Automation ; Extended colored traveling salesperson problem (ECTSP) ; Extended Colored Traveling Salesperson Problem (ECTSP)Genetic Algorithm (GA)Multirobot Mission PlanningMultirobot Systems ; genetic algorithm (GA) ; Genetics ; Integer programming ; Linear programming ; Mixed integer ; Multiagent systems ; Multiple robots ; multirobot mission planning ; multirobot systems ; Optimization ; Planning ; Robots ; Task analysis ; Taxonomy ; Urban areas</subject><ispartof>IEEE transactions on cybernetics, 2022-10, Vol.52 (10), p.10627-10638</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-3a12dbe30a963592a767b36e7360dd11b6c2ea85e24d9e1c73af0eaf791f20a03</citedby><cites>FETCH-LOGICAL-c429t-3a12dbe30a963592a767b36e7360dd11b6c2ea85e24d9e1c73af0eaf791f20a03</cites><orcidid>0000-0002-1364-8127 ; 0000-0002-5832-5452 ; 0000-0002-9051-929X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9430776$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33983890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54306$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Miloradovic, Branko</creatorcontrib><creatorcontrib>Curuklu, Baran</creatorcontrib><creatorcontrib>Ekstrom, Mikael</creatorcontrib><creatorcontrib>Papadopoulos, Alessandro Vittorio</creatorcontrib><title>GMP: A Genetic Mission Planner for Heterogeneous Multirobot System Applications</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased acceptance, and demanding productivity requirements. Being able to automate the generation of mission plans for MASs is critical for managing complex missions in realistic settings. In addition, finding the right level of abstraction to represent any generic MAS mission is important for being able to provide general solution to the automated planning problem. In this article, we show how a mission for heterogeneous MASs can be cast as an extension of the traveling salesperson problem (TSP), and we propose a mixed-integer linear programming formulation. In order to solve this problem, a genetic mission planner (GMP), with a local plan refinement algorithm, is proposed. In addition, the comparative evaluation of CPLEX and GMP is presented in terms of timing and optimality of the obtained solutions. The algorithms are benchmarked on a proposed set of different problem instances. The results show that, in the presence of timing constraints, GMP outperforms CPLEX in the majority of test instances.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Extended colored traveling salesperson problem (ECTSP)</subject><subject>Extended Colored Traveling Salesperson Problem (ECTSP)Genetic Algorithm (GA)Multirobot Mission PlanningMultirobot Systems</subject><subject>genetic algorithm (GA)</subject><subject>Genetics</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mixed integer</subject><subject>Multiagent systems</subject><subject>Multiple robots</subject><subject>multirobot mission planning</subject><subject>multirobot systems</subject><subject>Optimization</subject><subject>Planning</subject><subject>Robots</subject><subject>Task analysis</subject><subject>Taxonomy</subject><subject>Urban areas</subject><issn>2168-2267</issn><issn>2168-2275</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkUFr3DAQhUVJacImP6AUiiCXHrJbjWRLVm_bTbIpZEmgaaEnIdvjVMG2XMmm7L-vlt3sobpIjL43zJtHyHtgCwCmPz-tfn1dcMZhIZhiGsQbcsZBFnPOVX5yfEt1Si5ifGHpFKmki3fkVAhdiEKzM_Kw3jx-oUu6xh5HV9GNi9H5nj62tu8x0MYHeocjBv-cCD9Fupna0QVf-pF-38YRO7ochtZVdky6eE7eNraNeHG4Z-TH7c3T6m5-_7D-tlrez6uM63EuLPC6RMGsliLX3CqpSiFRCcnqGqCUFUdb5MizWiNUStiGoW2UhoYzy8SMXO37xr84TKUZguts2Bpvnbl2P5fGh2fT1b9NngkmE_5pjw_B_5kwjqZzscI2udyZMjznBahMpjXOyOV_6IufQp_MGK5AiqwAyBIFe6oKPsaAzXECYGaXj9nlY3b5mEM-SfPx0HkqO6yPitc0EvBhDzhEPH7r5EApKf4BVJmSnw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Miloradovic, Branko</creator><creator>Curuklu, Baran</creator><creator>Ekstrom, Mikael</creator><creator>Papadopoulos, Alessandro Vittorio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>ABGEM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF7</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-1364-8127</orcidid><orcidid>https://orcid.org/0000-0002-5832-5452</orcidid><orcidid>https://orcid.org/0000-0002-9051-929X</orcidid></search><sort><creationdate>20221001</creationdate><title>GMP: A Genetic Mission Planner for Heterogeneous Multirobot System Applications</title><author>Miloradovic, Branko ; Curuklu, Baran ; Ekstrom, Mikael ; Papadopoulos, Alessandro Vittorio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-3a12dbe30a963592a767b36e7360dd11b6c2ea85e24d9e1c73af0eaf791f20a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Extended colored traveling salesperson problem (ECTSP)</topic><topic>Extended Colored Traveling Salesperson Problem (ECTSP)Genetic Algorithm (GA)Multirobot Mission PlanningMultirobot Systems</topic><topic>genetic algorithm (GA)</topic><topic>Genetics</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mixed integer</topic><topic>Multiagent systems</topic><topic>Multiple robots</topic><topic>multirobot mission planning</topic><topic>multirobot systems</topic><topic>Optimization</topic><topic>Planning</topic><topic>Robots</topic><topic>Task analysis</topic><topic>Taxonomy</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miloradovic, Branko</creatorcontrib><creatorcontrib>Curuklu, Baran</creatorcontrib><creatorcontrib>Ekstrom, Mikael</creatorcontrib><creatorcontrib>Papadopoulos, Alessandro Vittorio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Mälardalens högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Mälardalens högskola</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miloradovic, Branko</au><au>Curuklu, Baran</au><au>Ekstrom, Mikael</au><au>Papadopoulos, Alessandro Vittorio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GMP: A Genetic Mission Planner for Heterogeneous Multirobot System Applications</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>52</volume><issue>10</issue><spage>10627</spage><epage>10638</epage><pages>10627-10638</pages><issn>2168-2267</issn><issn>2168-2275</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased acceptance, and demanding productivity requirements. Being able to automate the generation of mission plans for MASs is critical for managing complex missions in realistic settings. In addition, finding the right level of abstraction to represent any generic MAS mission is important for being able to provide general solution to the automated planning problem. In this article, we show how a mission for heterogeneous MASs can be cast as an extension of the traveling salesperson problem (TSP), and we propose a mixed-integer linear programming formulation. In order to solve this problem, a genetic mission planner (GMP), with a local plan refinement algorithm, is proposed. In addition, the comparative evaluation of CPLEX and GMP is presented in terms of timing and optimality of the obtained solutions. The algorithms are benchmarked on a proposed set of different problem instances. The results show that, in the presence of timing constraints, GMP outperforms CPLEX in the majority of test instances.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33983890</pmid><doi>10.1109/TCYB.2021.3070913</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1364-8127</orcidid><orcidid>https://orcid.org/0000-0002-5832-5452</orcidid><orcidid>https://orcid.org/0000-0002-9051-929X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2022-10, Vol.52 (10), p.10627-10638 |
issn | 2168-2267 2168-2275 2168-2275 |
language | eng |
recordid | cdi_pubmed_primary_33983890 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Automation Extended colored traveling salesperson problem (ECTSP) Extended Colored Traveling Salesperson Problem (ECTSP)Genetic Algorithm (GA)Multirobot Mission PlanningMultirobot Systems genetic algorithm (GA) Genetics Integer programming Linear programming Mixed integer Multiagent systems Multiple robots multirobot mission planning multirobot systems Optimization Planning Robots Task analysis Taxonomy Urban areas |
title | GMP: A Genetic Mission Planner for Heterogeneous Multirobot System Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GMP:%20A%20Genetic%20Mission%20Planner%20for%20Heterogeneous%20Multirobot%20System%20Applications&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Miloradovic,%20Branko&rft.date=2022-10-01&rft.volume=52&rft.issue=10&rft.spage=10627&rft.epage=10638&rft.pages=10627-10638&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3070913&rft_dat=%3Cproquest_pubme%3E2528174691%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-3a12dbe30a963592a767b36e7360dd11b6c2ea85e24d9e1c73af0eaf791f20a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716348114&rft_id=info:pmid/33983890&rft_ieee_id=9430776&rfr_iscdi=true |