Loading…
Endothelium-derived Cdk5 deficit aggravates air pollution-induced peripheral vasoconstriction through AT 1 R upregulation
PM infiltrates into circulation and increases the risk of systemic vascular dysfunction. As the first-line barrier against external stimuli, the molecular mechanism of the biological response of vascular endothelial cells to PM exposure remains unclear. In this study, 4-week-old mice were exposed to...
Saved in:
Published in: | Ecotoxicology and environmental safety 2021-05, Vol.219, p.112314 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | PM
infiltrates into circulation and increases the risk of systemic vascular dysfunction. As the first-line barrier against external stimuli, the molecular mechanism of the biological response of vascular endothelial cells to PM
exposure remains unclear. In this study, 4-week-old mice were exposed to Hangzhou 'real' airborne PM
for 2 months and were found to display bronchial and alveolar damage. Importantly, in the present study, we have demonstrated that Cdk5 deficit induced peripheral vasoconstriction through angiotensin II type 1 receptor under angiotensin II stimulation in Cdh5-cre;Cdk5
mice. In the brain, Cdk5 deficit increased the myogenic activity in the medullary arterioles under external pressure. On the other hand, no changes in cerebral blood flow and behavior patterns were observed in the Cdh5-cre;Cdk5
mice exposed to PM
. Therefore, our current findings indicate that CDK5 plays an important role in endothelium cell growth, migration, and molecular transduction, which is also a sensor for the response of vascular endothelial cells to PM
. |
---|---|
ISSN: | 1090-2414 |
DOI: | 10.1016/j.ecoenv.2021.112314 |