Loading…
Water Pollutants p-Cresol Detection Based on Au-ZnO Nanoparticles Modified Tapered Optical Fiber
In this work, a localized plasmon-based sensor is developed for para-cresol (p-cresol) - a water pollutant detection. A nonadiabatic 40~\mu \text{m} of tapered optical fiber (TOF) has been experimentally fabricated and computationally analyzed using beam propagation method. For optimization of sen...
Saved in:
Published in: | IEEE transactions on nanobioscience 2021-07, Vol.20 (3), p.377-384 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Magazinearticle |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-501ac5bdc1b154bdc0cfb39b38f9faeafcab7fd66cea4b514f7b6e83e4567cec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-501ac5bdc1b154bdc0cfb39b38f9faeafcab7fd66cea4b514f7b6e83e4567cec3 |
container_end_page | 384 |
container_issue | 3 |
container_start_page | 377 |
container_title | IEEE transactions on nanobioscience |
container_volume | 20 |
creator | Wang, Yu Zhu, Guo Li, Muyang Singh, Ragini Marques, Carlos Min, Rui Kaushik, Brajesh Kumar Zhang, Bingyuan Jha, Rajan Kumar, Santosh |
description | In this work, a localized plasmon-based sensor is developed for para-cresol (p-cresol) - a water pollutant detection. A nonadiabatic 40~\mu \text{m} of tapered optical fiber (TOF) has been experimentally fabricated and computationally analyzed using beam propagation method. For optimization of sensor's performance, two probes are proposed, where probe 1 is immobilized with gold nanoparticles (AuNPs) and probe 2 is immobilized with the AuNPs along with zinc oxide nanoparticles (ZnO-NPs). The synthesized metal nanomaterials were characterized by ultraviolet-visible spectrophotometer (UV-vis spectrophotometer) and transmission electron microscope (HR-TEM). The nanomaterials coating on the surface of the sensing probe were characterized by a scanning electron microscope (SEM). Thereafter, to increase the specificity of the sensor, the probes are functionalized with tyrosinase enzyme. Different solutions of p-cresol in the concentration range of 0~\mu \text{M} - 1000~\mu \text{M} are prepared in an artificial urine solution for sensing purposes. Different analytes such as uric acid, \beta -cyclodextrin, L-alanine, and glycine are prepared for selectivity measurement. The linearity range, sensitivity, and limit of detection (LOD) of probe 1 are 0~\mu \text{M} - 700~\mu \text{M} , 7.2 nm/mM (accuracy 0.977), and 59.90~\mu \text{M} , respectively; and for probe 2 are 0~\mu \text{M} - 1000~\mu \text{M} , 5.6 nm/mM (accuracy 0.981), and 57.43~\mu \text{M} , respectively. Thus, the overall performance of probe 2 is quite better due to the inclusion of ZnO-NPs that increase the biocompatibility of sensor probe. The proposed sensor structure has potential applications in the food industry and clinical medicine. |
doi_str_mv | 10.1109/TNB.2021.3082856 |
format | magazinearticle |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_34018936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9438675</ieee_id><sourcerecordid>2546709719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-501ac5bdc1b154bdc0cfb39b38f9faeafcab7fd66cea4b514f7b6e83e4567cec3</originalsourceid><addsrcrecordid>eNpdkE1r3DAQhkVJab56LxSCoZdcvNFYX9Yx2SZpIcn2sKWQiyPJI3DwWo5kH_rvo2U3OeT0DszzDsNDyDegCwCqL9YPV4uKVrBgtK5qIT-RIxCiLivJ9MF2ZrKEisMhOU7pmVJQUugv5JBxCrVm8og8_TMTxuJP6Pt5MsOUirFcRkyhL37ihG7qwlBcmYRtkYfLuXwcVsWDGcJo4tS5HlNxH9rOdxlYmxFjztWYN6YvbjqL8ZR89qZP-HWfJ-TvzfV6-au8W93-Xl7elY5xNZWCgnHCtg4sCJ6TOm-Ztqz22hs03hmrfCulQ8OtAO6VlVgz5EIqh46dkPPd3TGGlxnT1Gy65LDvzYBhTk0lGFSguKAZ_fEBfQ5zHPJ3meJSUa1AZ4ruKBdDShF9M8ZuY-L_Bmiztd9k-83WfrO3nytn-8Oz3WD7XnjTnYHvO6BDxPe15qyWSrBXF3GJNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2546709719</pqid></control><display><type>magazinearticle</type><title>Water Pollutants p-Cresol Detection Based on Au-ZnO Nanoparticles Modified Tapered Optical Fiber</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Yu ; Zhu, Guo ; Li, Muyang ; Singh, Ragini ; Marques, Carlos ; Min, Rui ; Kaushik, Brajesh Kumar ; Zhang, Bingyuan ; Jha, Rajan ; Kumar, Santosh</creator><creatorcontrib>Wang, Yu ; Zhu, Guo ; Li, Muyang ; Singh, Ragini ; Marques, Carlos ; Min, Rui ; Kaushik, Brajesh Kumar ; Zhang, Bingyuan ; Jha, Rajan ; Kumar, Santosh</creatorcontrib><description><![CDATA[In this work, a localized plasmon-based sensor is developed for para-cresol (p-cresol) - a water pollutant detection. A nonadiabatic <inline-formula> <tex-math notation="LaTeX">40~\mu \text{m} </tex-math></inline-formula> of tapered optical fiber (TOF) has been experimentally fabricated and computationally analyzed using beam propagation method. For optimization of sensor's performance, two probes are proposed, where probe 1 is immobilized with gold nanoparticles (AuNPs) and probe 2 is immobilized with the AuNPs along with zinc oxide nanoparticles (ZnO-NPs). The synthesized metal nanomaterials were characterized by ultraviolet-visible spectrophotometer (UV-vis spectrophotometer) and transmission electron microscope (HR-TEM). The nanomaterials coating on the surface of the sensing probe were characterized by a scanning electron microscope (SEM). Thereafter, to increase the specificity of the sensor, the probes are functionalized with tyrosinase enzyme. Different solutions of p-cresol in the concentration range of <inline-formula> <tex-math notation="LaTeX">0~\mu \text{M} </tex-math></inline-formula> - <inline-formula> <tex-math notation="LaTeX">1000~\mu \text{M} </tex-math></inline-formula> are prepared in an artificial urine solution for sensing purposes. Different analytes such as uric acid, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-cyclodextrin, L-alanine, and glycine are prepared for selectivity measurement. The linearity range, sensitivity, and limit of detection (LOD) of probe 1 are <inline-formula> <tex-math notation="LaTeX">0~\mu \text{M} </tex-math></inline-formula> - <inline-formula> <tex-math notation="LaTeX">700~\mu \text{M} </tex-math></inline-formula>, 7.2 nm/mM (accuracy 0.977), and <inline-formula> <tex-math notation="LaTeX">59.90~\mu \text{M} </tex-math></inline-formula>, respectively; and for probe 2 are <inline-formula> <tex-math notation="LaTeX">0~\mu \text{M} </tex-math></inline-formula> - <inline-formula> <tex-math notation="LaTeX">1000~\mu \text{M} </tex-math></inline-formula>, 5.6 nm/mM (accuracy 0.981), and <inline-formula> <tex-math notation="LaTeX">57.43~\mu \text{M} </tex-math></inline-formula>, respectively. Thus, the overall performance of probe 2 is quite better due to the inclusion of ZnO-NPs that increase the biocompatibility of sensor probe. The proposed sensor structure has potential applications in the food industry and clinical medicine.]]></description><identifier>ISSN: 1536-1241</identifier><identifier>EISSN: 1558-2639</identifier><identifier>DOI: 10.1109/TNB.2021.3082856</identifier><identifier>PMID: 34018936</identifier><identifier>CODEN: ITMCEL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Alanine ; Beams (radiation) ; Biocompatibility ; Biosensors ; Clinical medicine ; Cresol ; Cyclodextrin ; Cyclodextrins ; Electron microscopes ; Food industry ; Glycine ; Gold ; gold nanoparticles ; L-Alanine ; localized surface plasmon resonance ; Nanomaterials ; Nanoparticles ; Nanotechnology ; optical fiber biosensor ; Optical fiber sensors ; Optical fibers ; Optimization ; p-Cresol ; Pollutants ; Pollution detection ; Probes ; Scanning electron microscopy ; Selectivity ; Sensitivity ; Sensors ; Tyrosinase ; Uric acid ; Water pollution ; Zinc oxide ; zinc oxide nanoparticles ; Zinc oxides</subject><ispartof>IEEE transactions on nanobioscience, 2021-07, Vol.20 (3), p.377-384</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-501ac5bdc1b154bdc0cfb39b38f9faeafcab7fd66cea4b514f7b6e83e4567cec3</citedby><cites>FETCH-LOGICAL-c347t-501ac5bdc1b154bdc0cfb39b38f9faeafcab7fd66cea4b514f7b6e83e4567cec3</cites><orcidid>0000-0001-7900-0422 ; 0000-0001-8989-1791 ; 0000-0002-8596-5092 ; 0000-0001-9677-3582 ; 0000-0003-1626-8071 ; 0000-0002-6414-0032 ; 0000-0003-4149-0096 ; 0000-0002-3719-8271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9438675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>776,780,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34018936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhu, Guo</creatorcontrib><creatorcontrib>Li, Muyang</creatorcontrib><creatorcontrib>Singh, Ragini</creatorcontrib><creatorcontrib>Marques, Carlos</creatorcontrib><creatorcontrib>Min, Rui</creatorcontrib><creatorcontrib>Kaushik, Brajesh Kumar</creatorcontrib><creatorcontrib>Zhang, Bingyuan</creatorcontrib><creatorcontrib>Jha, Rajan</creatorcontrib><creatorcontrib>Kumar, Santosh</creatorcontrib><title>Water Pollutants p-Cresol Detection Based on Au-ZnO Nanoparticles Modified Tapered Optical Fiber</title><title>IEEE transactions on nanobioscience</title><addtitle>TNB</addtitle><addtitle>IEEE Trans Nanobioscience</addtitle><description><![CDATA[In this work, a localized plasmon-based sensor is developed for para-cresol (p-cresol) - a water pollutant detection. A nonadiabatic <inline-formula> <tex-math notation="LaTeX">40~\mu \text{m} </tex-math></inline-formula> of tapered optical fiber (TOF) has been experimentally fabricated and computationally analyzed using beam propagation method. For optimization of sensor's performance, two probes are proposed, where probe 1 is immobilized with gold nanoparticles (AuNPs) and probe 2 is immobilized with the AuNPs along with zinc oxide nanoparticles (ZnO-NPs). The synthesized metal nanomaterials were characterized by ultraviolet-visible spectrophotometer (UV-vis spectrophotometer) and transmission electron microscope (HR-TEM). The nanomaterials coating on the surface of the sensing probe were characterized by a scanning electron microscope (SEM). Thereafter, to increase the specificity of the sensor, the probes are functionalized with tyrosinase enzyme. Different solutions of p-cresol in the concentration range of <inline-formula> <tex-math notation="LaTeX">0~\mu \text{M} </tex-math></inline-formula> - <inline-formula> <tex-math notation="LaTeX">1000~\mu \text{M} </tex-math></inline-formula> are prepared in an artificial urine solution for sensing purposes. Different analytes such as uric acid, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-cyclodextrin, L-alanine, and glycine are prepared for selectivity measurement. The linearity range, sensitivity, and limit of detection (LOD) of probe 1 are <inline-formula> <tex-math notation="LaTeX">0~\mu \text{M} </tex-math></inline-formula> - <inline-formula> <tex-math notation="LaTeX">700~\mu \text{M} </tex-math></inline-formula>, 7.2 nm/mM (accuracy 0.977), and <inline-formula> <tex-math notation="LaTeX">59.90~\mu \text{M} </tex-math></inline-formula>, respectively; and for probe 2 are <inline-formula> <tex-math notation="LaTeX">0~\mu \text{M} </tex-math></inline-formula> - <inline-formula> <tex-math notation="LaTeX">1000~\mu \text{M} </tex-math></inline-formula>, 5.6 nm/mM (accuracy 0.981), and <inline-formula> <tex-math notation="LaTeX">57.43~\mu \text{M} </tex-math></inline-formula>, respectively. Thus, the overall performance of probe 2 is quite better due to the inclusion of ZnO-NPs that increase the biocompatibility of sensor probe. The proposed sensor structure has potential applications in the food industry and clinical medicine.]]></description><subject>Accuracy</subject><subject>Alanine</subject><subject>Beams (radiation)</subject><subject>Biocompatibility</subject><subject>Biosensors</subject><subject>Clinical medicine</subject><subject>Cresol</subject><subject>Cyclodextrin</subject><subject>Cyclodextrins</subject><subject>Electron microscopes</subject><subject>Food industry</subject><subject>Glycine</subject><subject>Gold</subject><subject>gold nanoparticles</subject><subject>L-Alanine</subject><subject>localized surface plasmon resonance</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>optical fiber biosensor</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optimization</subject><subject>p-Cresol</subject><subject>Pollutants</subject><subject>Pollution detection</subject><subject>Probes</subject><subject>Scanning electron microscopy</subject><subject>Selectivity</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Tyrosinase</subject><subject>Uric acid</subject><subject>Water pollution</subject><subject>Zinc oxide</subject><subject>zinc oxide nanoparticles</subject><subject>Zinc oxides</subject><issn>1536-1241</issn><issn>1558-2639</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2021</creationdate><recordtype>magazinearticle</recordtype><recordid>eNpdkE1r3DAQhkVJab56LxSCoZdcvNFYX9Yx2SZpIcn2sKWQiyPJI3DwWo5kH_rvo2U3OeT0DszzDsNDyDegCwCqL9YPV4uKVrBgtK5qIT-RIxCiLivJ9MF2ZrKEisMhOU7pmVJQUugv5JBxCrVm8og8_TMTxuJP6Pt5MsOUirFcRkyhL37ihG7qwlBcmYRtkYfLuXwcVsWDGcJo4tS5HlNxH9rOdxlYmxFjztWYN6YvbjqL8ZR89qZP-HWfJ-TvzfV6-au8W93-Xl7elY5xNZWCgnHCtg4sCJ6TOm-Ztqz22hs03hmrfCulQ8OtAO6VlVgz5EIqh46dkPPd3TGGlxnT1Gy65LDvzYBhTk0lGFSguKAZ_fEBfQ5zHPJ3meJSUa1AZ4ruKBdDShF9M8ZuY-L_Bmiztd9k-83WfrO3nytn-8Oz3WD7XnjTnYHvO6BDxPe15qyWSrBXF3GJNw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Yu</creator><creator>Zhu, Guo</creator><creator>Li, Muyang</creator><creator>Singh, Ragini</creator><creator>Marques, Carlos</creator><creator>Min, Rui</creator><creator>Kaushik, Brajesh Kumar</creator><creator>Zhang, Bingyuan</creator><creator>Jha, Rajan</creator><creator>Kumar, Santosh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7900-0422</orcidid><orcidid>https://orcid.org/0000-0001-8989-1791</orcidid><orcidid>https://orcid.org/0000-0002-8596-5092</orcidid><orcidid>https://orcid.org/0000-0001-9677-3582</orcidid><orcidid>https://orcid.org/0000-0003-1626-8071</orcidid><orcidid>https://orcid.org/0000-0002-6414-0032</orcidid><orcidid>https://orcid.org/0000-0003-4149-0096</orcidid><orcidid>https://orcid.org/0000-0002-3719-8271</orcidid></search><sort><creationdate>20210701</creationdate><title>Water Pollutants p-Cresol Detection Based on Au-ZnO Nanoparticles Modified Tapered Optical Fiber</title><author>Wang, Yu ; Zhu, Guo ; Li, Muyang ; Singh, Ragini ; Marques, Carlos ; Min, Rui ; Kaushik, Brajesh Kumar ; Zhang, Bingyuan ; Jha, Rajan ; Kumar, Santosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-501ac5bdc1b154bdc0cfb39b38f9faeafcab7fd66cea4b514f7b6e83e4567cec3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Alanine</topic><topic>Beams (radiation)</topic><topic>Biocompatibility</topic><topic>Biosensors</topic><topic>Clinical medicine</topic><topic>Cresol</topic><topic>Cyclodextrin</topic><topic>Cyclodextrins</topic><topic>Electron microscopes</topic><topic>Food industry</topic><topic>Glycine</topic><topic>Gold</topic><topic>gold nanoparticles</topic><topic>L-Alanine</topic><topic>localized surface plasmon resonance</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>optical fiber biosensor</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optimization</topic><topic>p-Cresol</topic><topic>Pollutants</topic><topic>Pollution detection</topic><topic>Probes</topic><topic>Scanning electron microscopy</topic><topic>Selectivity</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Tyrosinase</topic><topic>Uric acid</topic><topic>Water pollution</topic><topic>Zinc oxide</topic><topic>zinc oxide nanoparticles</topic><topic>Zinc oxides</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhu, Guo</creatorcontrib><creatorcontrib>Li, Muyang</creatorcontrib><creatorcontrib>Singh, Ragini</creatorcontrib><creatorcontrib>Marques, Carlos</creatorcontrib><creatorcontrib>Min, Rui</creatorcontrib><creatorcontrib>Kaushik, Brajesh Kumar</creatorcontrib><creatorcontrib>Zhang, Bingyuan</creatorcontrib><creatorcontrib>Jha, Rajan</creatorcontrib><creatorcontrib>Kumar, Santosh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on nanobioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yu</au><au>Zhu, Guo</au><au>Li, Muyang</au><au>Singh, Ragini</au><au>Marques, Carlos</au><au>Min, Rui</au><au>Kaushik, Brajesh Kumar</au><au>Zhang, Bingyuan</au><au>Jha, Rajan</au><au>Kumar, Santosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Pollutants p-Cresol Detection Based on Au-ZnO Nanoparticles Modified Tapered Optical Fiber</atitle><jtitle>IEEE transactions on nanobioscience</jtitle><stitle>TNB</stitle><addtitle>IEEE Trans Nanobioscience</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>20</volume><issue>3</issue><spage>377</spage><epage>384</epage><pages>377-384</pages><issn>1536-1241</issn><eissn>1558-2639</eissn><coden>ITMCEL</coden><abstract><![CDATA[In this work, a localized plasmon-based sensor is developed for para-cresol (p-cresol) - a water pollutant detection. A nonadiabatic <inline-formula> <tex-math notation="LaTeX">40~\mu \text{m} </tex-math></inline-formula> of tapered optical fiber (TOF) has been experimentally fabricated and computationally analyzed using beam propagation method. For optimization of sensor's performance, two probes are proposed, where probe 1 is immobilized with gold nanoparticles (AuNPs) and probe 2 is immobilized with the AuNPs along with zinc oxide nanoparticles (ZnO-NPs). The synthesized metal nanomaterials were characterized by ultraviolet-visible spectrophotometer (UV-vis spectrophotometer) and transmission electron microscope (HR-TEM). The nanomaterials coating on the surface of the sensing probe were characterized by a scanning electron microscope (SEM). Thereafter, to increase the specificity of the sensor, the probes are functionalized with tyrosinase enzyme. Different solutions of p-cresol in the concentration range of <inline-formula> <tex-math notation="LaTeX">0~\mu \text{M} </tex-math></inline-formula> - <inline-formula> <tex-math notation="LaTeX">1000~\mu \text{M} </tex-math></inline-formula> are prepared in an artificial urine solution for sensing purposes. Different analytes such as uric acid, <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-cyclodextrin, L-alanine, and glycine are prepared for selectivity measurement. The linearity range, sensitivity, and limit of detection (LOD) of probe 1 are <inline-formula> <tex-math notation="LaTeX">0~\mu \text{M} </tex-math></inline-formula> - <inline-formula> <tex-math notation="LaTeX">700~\mu \text{M} </tex-math></inline-formula>, 7.2 nm/mM (accuracy 0.977), and <inline-formula> <tex-math notation="LaTeX">59.90~\mu \text{M} </tex-math></inline-formula>, respectively; and for probe 2 are <inline-formula> <tex-math notation="LaTeX">0~\mu \text{M} </tex-math></inline-formula> - <inline-formula> <tex-math notation="LaTeX">1000~\mu \text{M} </tex-math></inline-formula>, 5.6 nm/mM (accuracy 0.981), and <inline-formula> <tex-math notation="LaTeX">57.43~\mu \text{M} </tex-math></inline-formula>, respectively. Thus, the overall performance of probe 2 is quite better due to the inclusion of ZnO-NPs that increase the biocompatibility of sensor probe. The proposed sensor structure has potential applications in the food industry and clinical medicine.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>34018936</pmid><doi>10.1109/TNB.2021.3082856</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7900-0422</orcidid><orcidid>https://orcid.org/0000-0001-8989-1791</orcidid><orcidid>https://orcid.org/0000-0002-8596-5092</orcidid><orcidid>https://orcid.org/0000-0001-9677-3582</orcidid><orcidid>https://orcid.org/0000-0003-1626-8071</orcidid><orcidid>https://orcid.org/0000-0002-6414-0032</orcidid><orcidid>https://orcid.org/0000-0003-4149-0096</orcidid><orcidid>https://orcid.org/0000-0002-3719-8271</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1241 |
ispartof | IEEE transactions on nanobioscience, 2021-07, Vol.20 (3), p.377-384 |
issn | 1536-1241 1558-2639 |
language | eng |
recordid | cdi_pubmed_primary_34018936 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Alanine Beams (radiation) Biocompatibility Biosensors Clinical medicine Cresol Cyclodextrin Cyclodextrins Electron microscopes Food industry Glycine Gold gold nanoparticles L-Alanine localized surface plasmon resonance Nanomaterials Nanoparticles Nanotechnology optical fiber biosensor Optical fiber sensors Optical fibers Optimization p-Cresol Pollutants Pollution detection Probes Scanning electron microscopy Selectivity Sensitivity Sensors Tyrosinase Uric acid Water pollution Zinc oxide zinc oxide nanoparticles Zinc oxides |
title | Water Pollutants p-Cresol Detection Based on Au-ZnO Nanoparticles Modified Tapered Optical Fiber |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Pollutants%20p-Cresol%20Detection%20Based%20on%20Au-ZnO%20Nanoparticles%20Modified%20Tapered%20Optical%20Fiber&rft.jtitle=IEEE%20transactions%20on%20nanobioscience&rft.au=Wang,%20Yu&rft.date=2021-07-01&rft.volume=20&rft.issue=3&rft.spage=377&rft.epage=384&rft.pages=377-384&rft.issn=1536-1241&rft.eissn=1558-2639&rft.coden=ITMCEL&rft_id=info:doi/10.1109/TNB.2021.3082856&rft_dat=%3Cproquest_pubme%3E2546709719%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-501ac5bdc1b154bdc0cfb39b38f9faeafcab7fd66cea4b514f7b6e83e4567cec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2546709719&rft_id=info:pmid/34018936&rft_ieee_id=9438675&rfr_iscdi=true |